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1 INTRODUCTION 

Even before the invention of the electronic digital computer by John Vincent Atanasoff 

[ 1], there developed a desire to create a machine which could emulate the functionality and 

t~ought processing of a living organism. This quest initially began as a movement called 

"cybernetics" in the 1940s and was later formalized and coined Artificial Intelligence (AI) by 

researchers in the mid-1950s [2]. Since that time the majority of advances in the field of AI 

have been related to symbolic processing of information using expen systems. In such 

systems, a set of rules is developed which can be manipulated by a program, or inference 

engine, in order to draw conclusions from a given set of input data, often in conjunction with a 

data base of facts, to produce an appropriate response. While this method has proven effective 

in many situations [3,4], the process relies on the ability to create formal representations of the 

problem at hand and generate a set of rules that appropriately describes the interaction of these 

representations. Rules are usually generated through consultation with a human expen by a 

knowledge engineer (the person implementing the expen system). Many refinements of the 

rules are often necessary, requiring many interviews and adjustments to the expen system. 

This can involve hundreds or thousands of person-hours. Furthermore, these types of systems 

are often sensitive to noise in the input data--a slight penurbance can produce significantly 

different results. Also, expen systems can require hundreds or thousands of inferences for a 

given set of input data, thus requiring great computational power. It is clear that this is not the 

son of processing which occurs in biological organisms, as the neuronal elements comprising 

these organisms are typically orders of magnitude slower than their electronic, anificial 



www.manaraa.com

.l 
L 
L 
l 
L 
l 
l 
L 
L 
L 

L 
L 
l 
l 
L 
f 
1-

L 
L 
L 

2 

counterparts. These underlying assumptions and limitations make it extremely difficult, if not 

impossible, to produce expert systems which perform tasks nearly every human performs 

routinely, such as reading hand-written text. 

This would imply there are many such tasks which can not be performed efficiently by a 

computer simply by providing it with a set of rules and a collection of facts. Therefore, it 

seems necessary to develop mechanisms by which a system can learn by example and through 

experience--the same way humans learn. By repeatedly presenting a set of input conditions 

and monitoring the associated response, the system parameters could be automatically adjusted 

so that the next presentation of the inputs will produce a response closer to the desired 

response. This learn by example method is more akin to the manner in which humans develop 

cognitive abilities. 

Artificial neural networks have recently come into the research spotlight again. After a 

long sabbatical from intensive study from the mid-1960s to the mid-1980s, much progress has 

been made in understanding these complicated and dynamic, yet crude, models of the nervous 

system. It is believed by many investigators [5-7] that these models ~old promise for 

performing many tasks for which expert systems are inadequate, inappropriate, or ineffective. 

These include robust image, speech, and hand-written character recognition. These tasks have 

eluded the grasp of symbolic processing paradigms, but seem well-suited for the learning 

mechanisms inherent in new-al networks. 

During the past year and a half, research has been conducted at the Center for 

Nondestructive Evaluation (NDE), Iowa State University, to investigate the learning 

mechanisms and network structures associated with artificial neural networks. The research 

was inspired by many needs within the Center for NDE for solutions to difficult inversion 

problems and robust signal processing methods. The application of neural networks to these 

and other.problems has proven effective and inspiring [8-10]. 
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This thesis covers several issues concerning the development of artificial neural 

networks, as well as the application of such networks to one problem identified at the Center 

for NDE. Chapter 2 provides a general background and brief history of the development of 

artificial neural networks. Chapter 3 describes in detail the mechanisms involved in a well

known learning algorithm, backpropagation. To show the merits associated with these 

networks, the application of this "standard" neural network paradigm to an inversion problem 

in NDE is described in Chapter 4. In Chapter 5, a novel learning mechanism based on genetic 

algorithms is described. Chapter 6 provides a comparison of the backpropagation and genetic

based learning algorithms. This comparison is made from two different points of view. The 

frrst analyzes the computational complexities of each algorithm, while the second compares the 

number of iterations required in obtaining a solution for several popular binary mapping 

problems. Chapter 7 discusses a mechanism, known as Dynamic Node Creation (DNC), first 

published by Timur Ash [11], applied to both backpropagation learning and genetic-based 

learning. This chapter includes a discussion of some relevant issues pertaining to feature 

detection not discussed in Ash's paper. Finally, Chapter 8 presents conclusions and a 

discussion of the issues presented in this thesis. 
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2 NEURAL NETWORKS 

2.1 Overview 

Artificial neural networks are intended to model the structure and operation of biological 

nervous systems. They are composed of simple -processing elements, richly interconnected. 

These networks can be trained to perform arbitrary mappings between sets of input-output 

pairs by adjusting the weights of interconnections. They require no a priori information or 

built-in rules; rather, they acquire knowledge through the presentation of examples. This 

characteristic allows neural networks to develop mappings for functions which do not appear to 

have a clearly defined algorithm or theory. Further, neural network performance has proven 

robust when faced with incomplete, fuzzy, or novel data. 

Succinctly, a neural network can be described as a directed graph, with the nodes of the 

graph represented by the artificial neurons (from now on referred to as neurodes--a 

combination of neurons and nodes), and the edges of the graph represented by the connections 

between the neurodes [5]. Typically, each neurode receives stimuli (input data) from several 

sources--other neurodes, the outside world, or both--and operates on its stimuli with a transfer 

function to produce a single output. This output becomes either the input to other neurodes in 

the network or the final output of the network. Figure 1 shows a graphical representation of a 

neural network with an arbitrary network architecture. In this figure the circles represent the 

neurodes and the lines depict the network connections. 
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Figure 1. A graphical representation of an artificial neural network with arbitrary network 
architecture. The circles represent the neurodes and the lines show the network 
connections. 
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2.2 History 

In order to provide motivation for some of the research presented later in this thesis, it 

will be helpful to provide some background and history relevant to the path which research on 

artificial neural networks has taken. 

The frrst significant contribution to the idea of emulating processing functions seen in 

biological organisms via the implementation of simple, highly interconnected computing 

eJements was put forth in 1943 by Warren McCulloch and Walter Pitts [12]. This work 

presented their ideas of combining finite-state machines and linear threshold elements for 

describing some forms of behavior and memory. In 1947 they published another important 

piece of work [13] describing network architectures with the ability to recognize spatial 

patterns, even when the patterns were subjected to geometrical transformations. This provided 

an early simulation of the processing thought to be carried out in biological visual systems. 

Later that same decade Donald Hebb published a book, The Or&anization of Behavior, 

which, for the frrst time, attempted to describe what role networks of neurons might play in 

thought processing. Hebb's important contribution from this work was that networks 

consisting of simple neurons might learn by creating internal representations of concepts. 

Not long after these works were published, research interest in this area subsided. It was 

not until 1962, when Frank Rosenblatt published Principles of Neurodynamics that the field of 

neural computing was to regain momentum. In his book, Rosenblatt proved a remarkable 

theorem based on a network of linear thresholding elements. He termed these networks 

perceptrons, shown in Fig. 2, and the theorem is called the Perceptron Convergence Theorem. 

It states, briefly, that a perceptton is capable of learning anything that it is possible to program 

it to do [2,14,15]. As significant as this result is, it also leaves perceptrons vulnerable due to 

limitations in their ability to handle certain types of mapping problems. For instance, because a 
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Output 

Figure 2. Graphical representation of Rosenblatt's perceptron. The output neurode (shown 
here as two separate circles) performs a thresholding function on the weighted sum 
of its inputs. wo is the threshold of the output neurode. 
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perceptron consisted of only linear thresholding elements and the inputs of a perceptron are 

connected directly to the outputs, Minsky and Papert [2] were able to show that there are 

certain simple functions for which it is impossible to program a perceptron to perform and, 

therefore, impossible for it to learn. The classic example of this type of function is the 

exclusive-OR (XOR). The reason this function can not be learned by a perceptron is that XOR 

is not linearly separable. Table 1 shows the input and output values for XOR, while Fig. 3 

shows what is meant by not linearly separable. Any two-input function whose outputs can not 

be separated into distinct classes by a single straight line, or in the case of higher dimensional 

input vectors, by a single hyperplane, is not linearly separable. A perceptron can not learn to 

perform the correct mapping for lU function which is not linearly separable. This work by 

Minsky and Papert, for all practical purposes, again halted intensive artificial neural network 

research for many years. 

Table 1. The exclusive OR (XOR) function 

Input x1 Input x2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

However, at this time it was also well-known that a perceptron consisting of a layer of 

hidden neurodes, neurodes that neither receive inputs from the outside world nor send outputs 

to the outside world, could perform the XOR function. This network is shown in Fig. 4. 

Unfortunately, one problem still persisted. A learning rule did not exist for adjusting the 
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0 
0 

Figure 3. This graph shows a plot of the XOR function as given in Table 1. Notice that a 
single straight line can not be drawn which separates the output responses, denoted 
as a tilled circle for a 1 and an open circle for a 0, into two distinct classes. This is 
what is meant by not linearly separable. A single layer perceptron can not solve this 
simple problem. The equation for the line shown in the figure is for a single layer 
perceptron with two inputs and a threshold wo on the output neurode. 
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Output 

0.5 0.5 

Figure 4. A multi-layer perceptron which can solve the XOR function as given in Table 1. 
The hidden layer is necessary (neurodes three and four) because XOR is not 
linearly separable. The number next to each neurode is the threshold for that 
neurode. 



www.manaraa.com

l 
L 

L 

L 
L 
L 
L 

L 
L 

L 

L 

L 
L 
L 
L 

l 
L 
L 
L 

11 

weights on the hidden layer neurodes. In other words, it was possible to program a multi-layer 

perceptron to perform the XOR function, but no algorithm existed by which the correct 

weighting factors could be learned. The Perceptron Convergence Theorem was only valid for 

perceptrons with an input layer and an output layer. With no hidden layer, adjusting the 

weights was as simple as calculating the error between the network output and the desired 

output and assigning an amount of this error to each of the contributing neurodes based on its 

input. The introduction of a hidden layer creates ~ credit assignment problem. That is, given 

~hat an error has occurred at the output layer, what proportion of that error can be attributed to 

the weights from the input layer to the hidden layer? 

It was not until much later, around 1986, that this question was satisfactorily answered 

by Rumelhart, McClelland and the Parallel Distributed Processing (PDP) Group [ 16]. This 

work revitalized research on artificial neural networks. Their solution is known as the 

generalized delta rule, more commonly referred to as backpropagation, and is discussed in 

detail in Chapter 3. Backpropagation provides a method for adjusting weights in a multi-layer 

perceptron-like network, and has proven very effective. As is discussed at the end of Chapter 

3, backpropagation still possesses some limitations and disadvantages. 

It should be noted that Werbos [17], Parker [18], and LeCun [19] had performed work 

similar to that of Rumelhart et al. in 1974, 1982, and 1985, respectively. However, the work 

most often cited in association with backpropagation is that of Rumelhart et al. and will be used 

as a reference throughout this thesis. 
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3 BACKPROPAGATION LEARNING IN FEED-FORWARD 

NEURAL NETWORKS 

3.1 Overview 

As discussed in Chapter 2, Rosenblatt's single layer perceptron was unable to perform 

mappings for functions which are not linearly separable. Although a multi-layer perceptron 

was known to be able to perform these kinds of mappings, it was unclear what the procedure 

for learning the correct weighting factors on the interconnections should be. In particular, 

although adjusting weight connections from the hidden layer nodes to the output layer nodes 

was straight forward and well-understood, adjusting the weights from the input layer to the 

hidden layer was an enigma. This credit assignment problem stymied res~archers for many 

years. A good solution to this problem was not widely acknowledged until David E. 

Rumelhart, James L. McClelland and the Parallel Distributed Processing (PDP) Group 

published a two volume series, Parallel Distributed Processin&, in 1986. Their method for 

adjusting the weights in a multi-layer perceptron-like neural network is called backpropagation, 

due to the manner in which errors calculated at the output layer are propagated back through the 

network to the input layer. To date, this method of configuring the weights in a feed-forward 

network (Section 3.2) with supervised learning (Section 3.4) has been the most widely used 

and successful. The remainder of this chapter will describe in detail the method for adjusting 

weights in a multi-layer perceptron-like network. Section 3.2 will describe feed-forward 

neural networks, Section 3.3 discusses how a neurode's output is computed, and Section 3.4 
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presents a brief introduction to supervised learning paradigms. Next, the backpropagation 

learning algorithm is presented in Section 3.5, followed by an explanation of the activation 

function typically used in this learning paradigm in Section 3.6. Finally, in Section 3.7, the 

advantages and disadvantages of backpropagation are discussed in order to further establish a 

basis for the research presented in Chapters 5, 6 and 7. 

3.2 Feed-Forward Neural Networks 

Figure 1 depicted a graphical representation of a neural network with an arbitrary network 

architecture. This is the type of structure one might expect to find in biological nervous 

systems. Some neurodes, such as neurodes one, two, and three in Fig. 1 receive stimuli from 

the outside world. These neurodes are tenned input neurodes. Other neurodes, numbers 

seven and eight, send their responses, or states of activation, back to the outside world and are 

thus called output neurodes. Neurodes four, five, and six receive stimuli only from other 

neurodes in the network and send their responses only to other neurodes in the network. 

These are called hidden neurodes. Notice that two of the neurodes in the network have 

recurrent connections--each sends its state of activation back to itself. Also notice that the 

connectivity of the neurodes in the network appears to be quite random. Although this may be 

true in biological organisms, this lack of structure severely complicates the analysis of artificial 

networks. Therefore, most researchers have opted to study networks with a more regular 

connectivity structure. 

Typically, neurodes are grouped into layers, with neurodes in one layer connected only to 

neurodes in other layers, i.e. no intralayer connections and no recurrent connections. These 

types of networks are called feed-forward neural networks. Another restriction often applied is 
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limiting the reach of the output response from one layer to the next higher layer in the network. 

For example, in a network with an input layer, a hidden layer (a layer consisting of only hidden 

neurodes,) and an output layer, there could be no direct connections from the input layer to the 

output layer. Further, a neurode in one layer is commonly connected to all neurodes in the 

layer above. In this case, the network is termed a fully connected feed-forward neural 

network. This is the type of network which will be considered throughout this thesis. A 

graphical representation of a network with this structure is shown in Fig. 5. 

3.3 Determining a Neurode's Output 

Each neurode in a network performs a specific function. This function is to produce a 

response to given input stimuli. A neurode's response, or output, is computed by a transfer 

function. Typically, the output of a neurode is determined in two steps. The first step is to 

compute a weighted sum of inputs. This weighted sum of inputs is also known as the 

neurode's state of activation--to what degree the neurode is activated. This is done by 

multiplying each of the incoming signals by the weight of the connection on which the signal is 

received. Referring to Fig. 6, this state of activation, I, is calculated as 

N 

l=wjo+ Lwjixi, 
i = 1 

(1) 

where Wji is the weight on the connection from the ith neurode in the preceding layer to the jth 

neurode (the neurode whose transfer function is being computed) in the current layer, Xi is the 

output of the ith neurode, and N is the number of input stimuli. WjO is a bias term, or 
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Figure 5. A fully connected, multi-layered, feed-forward neural network. 
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I f OUT= f(l) 
~_r~-~--~ 

Figure 6. Abstract representation of an artificial neuron, referred to as a neurode. This 
neurode performs two simple steps to calculate its response based on received 
inputs. It ftrst computes the weighted sum of inputs, I, and then applies an 
activation function, f, to I. wjO is the neurode's bias term. 
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threshold, and will be discussed more fully in Section 3.6. The second step is to apply an 

activation function, f, to I in order to produce the neurode's response to the stimuli. ·Denoting 

the neurode' s response as OUT, 

OUT= f(l). (2) 

3.4 Supervised Learning 

By appropriately adjusting the weights of interconnections in a neural network, the 

network can be configured to approximate, or learn, a particular function. Supervised learning 

is one of several different methods used in training neural networks. In a supervised learning 

environment, the correct set of output responses is known for a given set of input stimuli. This 

suggests that a "teacher" must be present which can guide the network in making appropriate 

adjustments to the network weights in order to correct errors. Weights are adaptively adjusted 

through the applic;uion of a learning algorithm (the "teacher") during a process called training. 

Training is an iterative procedure in which stimuli are presented to the input layer of the 

network and the network is allowed to compute its final response to this stimuli at the output 

layer. For a supervised learning algorithm, such as backpropagation, the outputs computed by 

the network are then compared against the desired outputs for the given stimuli. This 

comparison gives a measure of the overall error in the network, which is then used to adjust the 

weights in the network. Mter adjusting the weights, the next set of stimuli is presented, and 

the process continues until the error at the output layer is "acceptable" over the entire training 

set The acceptable level of error for a given network is problem and implementor dependent. 
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3.5 The Backpropagation Learning Algorithm 

The backpropagation learning algorithm was a major breakthrough in solving the credit 

assignment problem in multi-layer networks. Training a neural network using the 

backpropagation learning algorithm consists of: 1) presenting inputs to the network's input 

layer; 2) allowing the network to compute its outputs; 3) computing the errors at the output 

layer by presenting the network with the target outputs for the associated inputs; 4) 

propagating error signals back through each layer in the network; and 5) adjusting all weights 

in the network so as to minimize the errors at the outputs. Steps one and two above represent a 

forward pass through the network, while steps three, four, and five represent a backward pass. 

Therefore, two passes through the network are required for each input-output pair--one 

forward to compute outputs and one backward to compute errors and adjust weights. 

It will be helpful to refer to Fig. 7 which shows a portion of a multi-layer network and 

the relationship of the terms and symbols involved in performing a forward and a backward 

pass through the network. In this figure, wjo(t) and uko(t) are the bias tenns at timet for 

neurodes j and k, respectively. They are treated in the same manner as any other weight in the 

network with the exception of being connected to a neurode with a constant output of one 

(unity). As the forward pass is trivial, the following discussion will be concerned only with 

the backward pass--calculation of error signals and adjustment of weights. 

To adjust the weights for neurodes in the output layer, an error signal for the tth iteration 

and the kth neurode, ak(t), is calculated as 

(3) 
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t Yk(t) 

Backward Pass 
1\ 

ok(t) = f'(lk(t)) (yk(t) - Yk(t)) 

Sj(t) = f(lj(t)) L ~(t) .Ukj(t) 
k 

~Wji(t) =a Bj(t) xi(t) 

Figure 7. A graphical view of the processes involved in perfonning a single iteration of the 
backpropagation learning algorithm in a multi-layered feed-forward neural network. 
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where f is the derivative of the activation function, Yk(t) is the target output for the tth iteration, 

1\ 

and Yk(t) is the network estimate of Yk(t). Because the calculation of the error signal involves 

computing the derivative of the activation function, f must be differentiable everywhere. 

Section 3.6 contains a description and discussion of the activation function typically used for 

backpropagation learning. The change of weight ukj(t) connecting the kth neurode in the output 

layer and the jth neurode in the final hidden layer for the tth iteration is defined as 

(4) 

where a is a learning rate constant and Zj(t) is the output of the jth neurode for the tth iteration. 

The new weight, Ukj(t+l) is then 

(5) 

Notice that the calculation of the error signal at the output layer is straightforward because 

the desired state of activation is known for each neurode in the output layer. This allows for an 

easily understandable adjustment of the weights connecting the final hidden layer and the 

output layer by moving along the gradient which will produce a lower error for the given input 

stimuli presented during the current iteration. This same type of weight adjustment procedure 

was used by Rosenblatt in his perceptron models. However, computing the error signals for 

neurodes at layers other than the output layer is not so straight forward. The desired response 

for each neurode in these layers is not provided in the training set, so the proper response for 

these neurodes is not explicitly known. 

Accordingly, the error at the output layer must be propagated back down to previous 

layers in the network in order to get an idea of the desired response for each of the lower layer 
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neurodes. This is done by computing the contribution from a lower layer neurode to the error 

at the neurodes in the next higher layer. Computing the error signal for these neurodes is done 

by summing the next higher layer neurodes' error signals, weighted by the connection 

strength. This provides an estimate of how much of the error at each of the neurodes in the 

higher layer is due to the current neurode in the layer below. For example, the error signal Oj(t) 

for the jth neurode during the tth iteration in a hidden layer is calculated as 

O/t) = f '(Ij(t)) L 8t(t) Ukj(t) 
k 

(6) 

and the change of weight Wji(t) connecting the jth neurode and the ith neurode in the previous 

layer for the tth iteration is defined, as before, by 

(7) 

where Xj(t) is the output of the ith neurode in the previous layer, giving the new weight 

wjiCt+l) as 

(8) 

This backward propagation of error signals continues to the fll'St hidden layer. 

It is important to note that, for standard backpropagation, the weights for a given layer in 

the network should not be changed before the error signals for all neurodes in the next lower 

layer have been computed. In other words, it is necessary for the weights to remain as they 

were when the response to the input stimuli was computed. The weight adjustment process is 
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repeated for all of the input-output pairs in the training set. Training is stopped when the errors 

at the output layer reach a sufficiently low level. For clarity and completeness, a flow chart of 

the backpropagation algorithm is presented in Fig. 8. 

The goal of backpropagation learning is to perform a gradient descent search in weight 

space to minimize the error for all pairs in the training set. The error surface is determined by 

the set of possible weights for the network for a given input-output pair. As with any gradient 

search method, backpropagation is susceptible to becoming trapped in local minima. Several 

methods for escaping local minima have been proposed, including the use of a momentum tenn 

[7]. Using a momentum term essentially adds some part of past weight changes to the current 

weight change. This can often help move over small "bumps" in the error surface that 

otherwise might trap the algorithm. However, this still does not guarantee that the algorithm 

will find a global minimum. With the addition of a momentum term, the equation for 

computing the change in weights (using Eq. 4) is modified to be 

(9) 

where 11 is the momentum constant. Adding a momentum term to the standard weight 

adjustment term nearly always results in improved performance during training. However, 

proper selection of the learning constant, a, and the momentum constant, 11, can be crucial 

factors in determining the learning time and quality of solution for a given network and 

application. 

Another variation of backpropagation commonly used is called hatching. Batching refers 

to how often the weights in the network are actually updated. Instead of adjusting the weights 

after the presentation of each input-output pair in the training set, it may be preferable to adjust 

the weights after accumulating errors and weight changes over a number of input-output pairs. 
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Compute Network Errors 
At Outputs 

Compute Error Signals for 
---~ this Layer in Network 

Compute Weight Changes 
for this Layer in Network 

Propagate Errors Down 
to Next Lower Layer 

Move Down One Layer 
in the Network 

Adjust All Weights 
in the Network 

DONE 

Figure 8. Flow chan illustrating the training process for backpropagation. 
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Batching over the entire training set more closely approaches a true gradient descent 

search by taking into consideration the complete function to be optimized. Adjusting the 

weights after the presentation of a single input-output pair can often move the weights in a 

direction which favors the current pair, but will have the opposite effect on the following pair 

or pairs. Adjusting weights after each input-output pair is equivalent to using a batch size of 

one. 

Because backpropagation is currently the most widely used learning algorithm for multi

layered feed-forward neural networks, many other modifications to the algorithm have been 

proposed in order to increase performance [20-25]. Chapter 4 will present the application of 

backpropagation learning to a problem in nondestructive evaluation. All of the results in that 

chapter were obtained with the addition of a momentum term to the standard weight adjustment 

term. 

3.6 Activation Functions 

The description of the backpropagation learning algorithm in Section 3.5 showed the 

necessity for an activation function, f, which is differentiable everywhere. Recall that the 

activation function is applied to a neurode's state of activation in order to produce the neurode's 

output Rosenblatt's perceptron utilized a thresholding function, 

l
u ,I~ w0 

f(l) = 
L ,I< wo 

(10) 
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shown in Fig. 9. Here, U defines the upper bound (ON-state}, L defines the lower bound 

(OFF-state), and wo is the threshold (often referred to as a bias term) When the input, I, to the 

function, f, equals or exceeds the threshold, the output of the function is U. Otherwise, it 

remains at L. w0 has the effect of shifting the activation function along the I axis. It is clear 

that a derivative for this activation function does not exist everywhere, and, therefore, cannot 

be used for backpropagation. 

Rumelhart et al. have identified the logistic (sigmoidal) activation function as one which 

meets several criteria deemed important in learning with backpropagation [16]. The logistic 

activation function, shown in Fig. 10, is given by· 

OUT = f(l) = U - L + L. 
1 + e -U * S) 

(11) 

I is defined as in Eq. 1. Again, U is the upper bound, Lis the lower bound, and S controls the 

slope of the function. Higher values of S produce steeper slopes, approaching a thresholding 

function, whereas lower values of S produce a more gently varying function [7]. The 

derivative of this activation function can be reduced to 

f(I) = U ~ L (U- OUT) (OUT- L) (12) 

where OUT is the output response of a neurode as given in Eq. 11. For an upper bound of one 

(U=1), a lower bound of zero (L=O), and a slope of one (S=l), Eq. 12 reduces to 

f(I) = ( 1 - OUT) OUT. (13) 
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f(l) 

l
u ,1~ w0 

f(l) = 
L ,I< wo 

u--

~ I 

L 

Figure 9. A thresholding activation function. U is the upper bound, L is the lower bound, and 
wo is a bias term which shifts the function along the I axis. 

f(l) 

U-L 
OUT= f(l) = + L 

1 + e-(1 * S) 

Figure 10. A logistic (sigmoidal) activation function. U is the upper bound, Lis the lower 
bound, S controls the slope, and wo is a bias term which shifts the function along 
the I axis. 
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These values of U, L, and S are typical for learning binary mappings. There are several 

important things to notice about the logistic activation function. First, it is monotonically 

increasing, so that the stronger the input received by a neurode, the larger the output response 

will be, bounded by U. Therefore, stronger input stimuli can never produce a weaker response 

than weaker input stimuli. However, it also acts as an automatic gain control [6], so that as I 

~ -oo, OUT ~ L, and as I ~ +oo, OUT -+ U. This prevents the outputs of the neurodes 

from growing without bound, which could allow some neurodes to dominate the operation of 

the network and cause a kind of "paralysis." Second, the derivative is easily computed, 

making it very attractive in a paradigm which can be computationally intensive. Third, the 

derivative attains a maximum value when OUT equals (U - L) I 2 and tails off to zero as OUT 

-+ U or OUT ~ L. Because the amount of change for any given weight is proportional to the 

derivative off, when neurodes are near their midrange of possible output responses, (U - L) I 

2, the change in weights will be greatest. This suggests that until neurodes are committed to 

being at either their maximum or minimum output values for given input stimuli, the weights 

will change by a greater amount. Rumelhart et al. [16] suggest that this may contribute to the 

stability of learning in these networks. 

3. 7 Advantages and Disadvantages of Backpropagation Learning 

Perhaps the greatest advantage of backpropagation is that a number of successful 

applications have been produced using this learning algorithm [8]. Aside from this there are 

several other advantages worth mentioning. First, in this era of ever-increasing computing 

power and speed, this algorithm performs quite efficiently and quickly on modestly sized 

problems. Second, because the algorithm is rather simple and recursive in nature, it is easily 
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implemented in software. Third, any activation function which is differentiable everywhere 

can be used for computing a neurode's response. Fourth, the concept of performing a gradient 

descent search to find minima has a long history. 

However, there are a number of disadvantages associated with backpropagation, several 

of which are listed as advantages. First, although modestly sized problems can be solved in a 

reasonable amount of time, scaling problems up in size and difficulty can produce training 

times which run into days and weeks on even very fast computers with no guarantee of finding 

a "good" solution for a given network. Second, the choice of the activation function is limited 

to those which are differentiable. Although the logistic activation function has been useful thus 

far, there may exist other activation functions which are more useful or better suited to a 

particular application. These other activation functions may not have a derivative everywhere, 

or it may be difficult or expensive to calculate its derivative. Third, because backpropagation is 

a gradient descent technique, it is susceptible to all of the problems inherent with this 

technique, most notably becoming trapped in local minima. Fourth, altering the snucture of the 

network to include recurrent connections and intralayer connections makes developing a 

general robust program much more complicated. Clearly some assumptions would have to be 

made about the order of calculation of hidden neurodes and about the recurrent connections. 

Rewriting the backpropagation algorithm so that it is applicable to every possible network 

configuration would be difficult and could lead to serious performance degradation. Obviously 

there are some types of networks and activation functions for which backpropagation is not 

well suited. Fifth, backpropagation is not well-suited for decreasing learning time through 

parallelization. It is a strictly iterative training procedure which is best performed on a single 

CPU. Certainly the neurodes in a network can be physically located on separate CPUs, but the 

overhead involved in communication and synchronization generally outweighs, or nearly so, 

the computational speed advantage of using multiple processors. 
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Chapter 5 presents research results on a learning mechanism which does not have any of 

the limitations concerning network architecture and neurode processing mentioned above. 

Perhaps most importantly, though, this learning algorithm is easily and naturally parallelized, 

significantly reducing training times on machines which are massively parallel. 
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4 INVERSION OF UNIFORM FIELD EDDY CURRENT DATA 

BY USING NEURAL NETWORKS 

4.1 Overview 

Nondestructive evaluation (NDE) is the discipline charged with evaluating the structural 

integrity and quality of materials without destroying them in the process. Over the years, many 

methods have been developed to interrogate materials, including visual inspection, ultrasonic, 

radiographic, magnetic, eddy current, penetrants, and thermographic techniques [26]. As the 

reliability and sophistication of these methods has progressed, NDE engineers and scientists 

have moved from a need for qualitative NDE (indicating the presence or absence of a flaw) to a 

need for quantitative NDE (determining the size and orientation of a flaw if one is present). As 

public demand for quality components and systems increases, quantitative NDE will surely 

play an increasingly important role. 

During the past year and a half, research has been conducted at the Center for 

Nondestructive Evaluation, Iowa State University, for determining the feasibility of using 

artificial neural networks for interpreting signals obtained from an eddy current probe. In 

particular, I have investigated the use of these networks for determining the size of surface 

breaking cracks from data obtained with a uniform field eddy current probe. 

The remainder of this chapter will discuss the type of data obtained with a uniform field 

probe, the steps taken for investigating the feasibility of using neural networks for interpreting 

these data, and the results of this investigation. 
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4.2 Introduction 

Inversion of eddy current flaw signals has typically been based upon models of the field

flaw interaction, a so-called model-based inversion procedure. Although the feasibility of 

inverting eddy current data in this fashion has been demonstrated before [27-29], the 

complexity of such procedures has hampered their widespread acceptance and use in industry. 

The goal of this study is to develop an inversion. method that is easy to use and implement 

outside the research community. This chapter presents results of the use of neural networks 

for the inversion of eddy current flaw signals to obtain flaw sizes. 

4.3 U nifonn Field Eddy Current Probe 

A uniform field eddy current probe was selected for use in this study because a 

substantial body of experimental and theoretical work exists. The theory for the interaction of a 

spatially uniform electromagnetic field with a three-dimensional flaw developed by B. A. Auld 

et al. [30,31] is well-known and has been shown to agree with experiment [32,33]. In the 

limit of small skin depth, the change in probe impedance caused by a flaw can be represented 

as 

A '7 c H
2 [~o (1 . ) c ~ 1 i au c ~ 1] UL=-- ~ + +t -~ +-~ 

C1 12 C1 dl ' (14) 

where ~ is the magnetic field strength per unit current, a is the conductivity of the material 

under interrogation, 2c is the flaw length, au is the flaw width, a is the electromagnetic skin 
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depth, and i represents the imaginary number, ...r=f. ~0 and~~ are shape factors that depend 

only on (~), where a is the flaw depth. The three terms in Eq. 14 correspond roughly to 

resistive losses at the crack comers, the wall impedance of current flowing over the flaw 

surfaces, and Faraday induction due to the volume enclosed by currents encircling the flaw 

[27]. 

The ~s for use with rectangular and semi-elliptical flaws have been calculated numerically 

and fit to polynomials by a nonlinear least-squares method [34], giving 

(15) 

and 

(16) 

The probe u~ed here is based on a design proposed by E. Smith [32], but in a slightly 

different configuration [34], as shown in Fig. 11. This probe consists of a C-shaped ferrite 

core wound with 65 turns of wire, creating an active region between the two tips of the ferrite. 

To increase uniformity of the magnetic field in the active region, the tips of the ferrite were 

shaped and chamfered [34], and a copper foil surrounds the probe to diminish effects of field 

leakage. 
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Figure 11. Uniform field eddy current (UFEC) probe. 
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4.4 Approach 

Two approaches were taken to determine the feasibility of using a neural network for inversion 

of eddy current flaw signals. The first approach involved the development of a network for 

inverting synthetic (noise-free) data. Flaw dimensions were generated randomly such that c ~ 

2.00 mm, ~ S 1, ~u S O.lc, and t ~ 2, where c is the flaw half-length, a is the flaw depth, ~u 

is the flaw width, and 8 is the skin depth. These limits were chosen to assure compatibility of 

synthetic data with experimentally accessible flaw dimensions. 

The second approach was the trial inversion -of experimental data obtained with a uniform 

field probe. Data were taken with the uniform field probe described earlier using computer 

controlled x-y positioners to move a sample under the stationary probe. Real and imaginary 

values of probe impedance were acquired by a personal computer connected to a Hewlett

Packard 4194A Impedance Analyzer over an IEEE-488 bus. Each measurement consisted of 

scanning the probe over a flaw in one-dimension, giving impedance values at a number of 

points both near the flaw and away from the flaw. This allowed for preprocessing of the data 

to remove effects caused by tilt. Measurements were taken at ten frequencies between 1 and 10 

MHz, spaced at 1 1\filz intervals. Flaw impedance magnitude, ldZJ, and phase, 9, at the center 

of the flaw were then calculated at each frequency. The flaws consisted of five semi-elliptical 

EDM notches, one "no flaw," and two fatigue cracks in Ti-6Al-4V. The dimensions of these 

flaws.are shown in Table 2. 

In both approaches, the flaw dimensions are the outputs of the neural network and the tlZ 

magnitude-phase information is the input. The specific network architectures used for each 

case are discussed below. After training, the networks were tested with data not used during 

training in order to evaluate the network's ability to generalize. 
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Table 2. Dimensions and types for flaws used in the experimental portion of this study 

Length, 2c Depth, a Width, 8u 
Flaw# (mm) (mm) (mm) Flaw Type 

1 2.48 1.05 0.16 EDMnotch 

2 2.01 0.85 0.20 EDMnotch 

3 1.60 0.63 0.12 EDMnotch 

4 1.18 0.40 0.12 EDMnotch 

5 0.61 0.33 0.10 EDMnotch 

6 0.00 0.00 0.00 EDMnotch 

7 0.99 0.33 0.00 Fatigue c~ck 

8 0.98 0.33 0.00 Fatigue crack 

4.5 Implementation 

When this project began, it was necessary to develop a backpropagation program that 

could run on a standard digital computer such as a PC, Macintosh, or Apollo workstation. The 

program used for this implementation was adapted from a program developed by Pao [7]. 

Since then, a backpropagation simulator has been developed that utilizes a coprocessor board 

and software library routines from Hecht-Nielsen Neurocomputers (HNC). The coprocessor 

board provides much greater throughput (a must for most neural network algorithms), while 

the software library allows for fairly easy adaptation and implementation of many different 

neural network paradigms. 
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4.6 Results Using Synthetic Data 

Two sets of flaw dimensions and associated liZ magnitude-phase information were 

generated for training a network. One set consisted of 100 pairs, the other consisted of 1000 

pairs. The second set included the same 100 pairs as the first set, but with an additional 900 

pairs. Flaw impedance magnitude, I~ZI, and phase, 8, were then calculated at seven 

frequencies (2 MHz- 8 MHz at 1 MHz intervals) according to Auld's ~Z theory [31] for each 

qf the flaw geometries. After training separate networks, one using the 100-pair training set 

and the other using the 1 000-pair training set, the performance of each network was tested with 

a 100-pair testing set different from either of the training sets. The estimated flaw sizes 

computed by the network for the testing set were then compared with the actual flaw 

dimensions to evaluate the network's performance. The network trained on 100 pairs had an 

input layer of 14 processing elements (magnitude and phase for each of seven frequencies), 

one hidden layer of 14 processing elements, and an output layer of 3 processing elements (one 

each for flaw length, depth, and width). The network trained on 1000 pairs differed only by 

having an additional hidden layer of 14 processing elements. No attempt was made here to 

fmd minimal and/or optimal network architectures. 

Figure 12 shows the results of both networks' estimates of flaw depth vs. the actual 

depth for each of the 100 flaws in the testing set. The figure shows that the network trained on 

100 pairs (Fig. 12a) has fair performance, but that the network has not been able to closely 

approximate the function involved. The mean absolute error for the testing set is 16.81% and 

the standard deviation is 12.37%. The network trained on 1000 pairs (Fig. 12b), however, 

produced much better results, having a mean absolute error of 3.05% and a standard deviation 

of 2.89%. This demonstrates that the second network has been able to more closely 

approximate the mapping for flaw depth inversion. 
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Figure 12a. Results of testing after ttaining a neural network with synthetic data generated 
according to Auld's ~theory for 100 randomly chosen flaw geometries. The 
graph shows estimated flaw depth vs. actual flaw depth. 
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Figure 12b. Results of testing after training a neural network with synthetic data for 1000 
randomly chosen flaw geometries. The graph shows estimated flaw depth vs. 
actual flaw depth. 
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Both training sets represent a small fraction of the total population of flaws. This implies that 

the performance of the first network is good considering the training set size, but that 

performance was dramatically improved by training on a larger set of flaws as demonstrated by 

the second network. This suggests that the performance of the network might be funher 

improved by using a still larger training set 

4. 7 Results Using Experimental Data 

Owing to the limited number of flaws available for measurement, only one set of data 

was obtained for training a network to invert experimental flaw data. In order to generate 

training and testing sets of useful size, 20 independent measurements at ten frequencies ( 1 

:MHz- 10 MHz at 1 :MHz intervals) were made on each of the eight flaws in Table 2, giving a 

total of 160 measurements. 

Two different approaches were pursued for training and testing a network on the 

experimental data. The ftrst was to use only the EDM notches and the "no flaw." Training and 

testing sets were created by dividing the six flaws into two disjoint subsets. Because the 

training set needed to span the range of flaw dimensions that would be seen during testing, I 

chose to use four flaws, #1, #3, #5, and #6, for training and the remaining two flaws, #2 and 

#4, for testing. Although the training flaws cover the range of dimensions of the test flaws for 

both the flaw half-length and depth, the width for flaw #2 falls outside those in the training set. 

Figure 13a is a comparison of the network's estimates for flaw half-length for each of the 

20 measurements on flaws #2 and #4. The network's estimates show good agreement with the 

actual flaw half-length, and all estimates are within about ±10% of the actual size. This net 
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Figure 13a. Comparison of actual and estimated flaw half-lengths for flaws #2 and #4 (EDM 
notches). The half-lengths were estimated by a neural network after training on 
flaws #1, #3, #5, and #6 (see Table 2). 
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consisted of 20 inputs, 6 hidden neurodes, and one output and required approximately 50,000 

iterations (presentations of the training set). 

Figure 13b shows a comparison of the network's estimates for flaw depth with the actual 

depth for the same measurements on flaws #2 and #4. Again, the results show good 

agreement between network estimates and actual depth. The net developed for this particular 

inversion consisted of 20 inputs, 10 processing elements in the ftrst hidden layer, three 

processing elements in the second hidden layer, and a single output (flaw depth). The number 

.of iterations required for this net was approximately 4,000. 

The next step was to see if a net could be developed to estimate flaw dimensions for a 

fatigue crack, having trained on only EDM notches. Thus, the five EDM notches and one "no 

flaw" were used in training a network, and the two fatigue cracks were used for testing. A 

fatigue crack differs greatly from an EDM notch in its geometrical properties. Fatigue cracks 

are the types of cracks to be expected when looking for flaws with an eddy current probe in an 

industrial setting. However, fatigue cracks of known dimension are much harder to 

manufacture or acquire and consequently are quite expensive and hard to come by. The goal of 

this particular experiment was to determine if a network could be trained using only EDM 

notches, yet be used to correctly size fatigue cracks. If possible, this would alleviate the 

burden of acquiring a large set of expensive fatigue cracks for use during training. 

Figure 14a shows the comparison between network estimates for flaw half-length and 

actual half-length, while Fig. 14b compares estimated and actual flaw depth. It can be seen that 

agreement is again quite good. Further, this demonstrates the ability of the network to 

generalize by estimating half-length and depth for a novel flaw with novel dimensions. 

Although figures showing estimates of flaw width are not included, the results of depth 

estimation for the theoretical case are similar to estimations for the other two dimensions. In 
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Figure 13b. Comparison of actual and estimated flaw depths for flaws #2 and #4 (EDM 
notches). The depths were estimated by a neural network after training on flaws 
#1, #3, #5, and #6. 
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Figure 14a. Comparison of actual and estimated flaw half-lengths for flaws W7 and #8 (fatigue 
cracks). The half-lengths were estimated by a neural network after training on 
flaws #1-#6 (EDM notches). 
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Figure 14b. Comparison of actual and estimated flaw depths for flaws #7 and #8 (fatigue 
cracks). The depths were estimated by a neural network after training on flaws 
#1-#6 (EDM notches). 
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the experimental case, width estimations were not attempted on the fatigue cracks since the 

training set could not be sufficiently configured to account for such tight flaws. 

4.8 Discussion 

Several steps can be taken to improve performance of the networks, particularly for 

experimental data. One such step is to measure more flaws, thereby creating a larger training 

set. I believe this will improve performance for experimental data as it did with synthetic data. 

This means, however, measuring a large number of flaws covering a wide range of shapes and 

sizes. One way to overcome this problem might be to train a network with synthetic data, from 

which a large training set can easily and readily be obtained, and then test the network with 

experimental data. This would provide a virtually unlimited training set size which could be 

configured to meet any criteria. The major obstacle to this approach currently rests in the 

inability to obtain a calibration which provides good agreement between theoretical calculations 

and experimental measurements over a wide range of frequencies. 

Only a limited amount of effort was devoted to optimizing these networks. Two such 

effons were neurode addition [ 11] and neurode pruning [35]. These two ideas can be 

combined to help find an "optimal" network configuration. For example, an initial guess at the 

size of the network is made. As learning progresses, it may be discovered that the current 

configuration will reach a point at which learning will cease (or nearly so). At this point, it 

may be prudent to add another processing element to a hidden layer and continue training. The 

addition of the extra neurode can give the network additional degrees of freedom and aid in 

learning. This process continues until the net is sufficiently trained or it is deemed that an 

entirely new structure or paradigm is required. This idea, including my variation, will be 
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covered fully in Chapter 7. Neurode pruning is just the opposite. After training is finished (or 

nearly so), it might be noted that one or more of the processing elements in a hidden layer is 

contributing very little to the final result. In this case, the neurode may be pruned from the 

network. The net should then be briefly retrained in order to account for the lost neurode. 

After performing several experiments, I determined that neurode addition is a more feasible 

approach, thus neurode pruning was dropped. 

Again, only a limited amount of time was invested in exploring these optimization ideas 

ror this application. While backpropagation is the most popular learning paradigm currently in 

use and generally works quite well, it has several drawbacks. One of these is that training can 

often be quite long, both in number of iterations required and in real processing time. For 

example, the net trained on flaws #1, #3, #5, and #6 required approximately 50,000 iterations 

and it is believed that this network is still not fully trained. It was stopped due to time 

considerations. Another problem is backpropagation's susceptibility to local minima as 

discussed earlier. This can put the net into a non-optimal state, in which case training may 

have to be restarted using different initial weight values. However, whether or not the net is in 

an optimal state may not be readily apparent. 

4.9 Conclusions 

Results from both the theoretical and experimental approaches to training neural networks 

for the inversion of unifonn field eddy current data are very encouraging. There is certainly 

much more work to be done, however, especially with experimental data. Results from both 

parts of this study have shown the need for proper training sets: a large number of examples as 

demonstrated by the theoretical results, and a thorough and complete coverage of ranges as 
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demonstrated by the experimental results. As the results demonstrate, neural networks show 

great promise in being able to solve the inverse problem for eddy current data. 
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5 GENETIC-BASED LEARNING IN ARTIFICIAL NEURAL 

NETWORKS 

5.1 Genetic Algorithms 

A novel learning mechanism for artificial neural networks, genetic-based learning, is 

presented in this chapter. Section 5.1 is a brief introduction to genetic algorithms, their 

mechanisms for global optimization, and an analysis of the way in which genetic algorithms are 

able to search for highly-fit individuals from an initially random population of possibly poorly

fit individuals. Section 5.2 presents the application of genetic algorithms to the task of 

optimizing weights in neural networks. Section 5.3 discusses several improvements to the 

basic algorithm developed in Section 5.2.4, perhaps, most importantly, a parallel 

implementation of- genetic-based learning presented in Section 5.3.4, which provides a 

significant reduction in learning time. 

5. 1.1 Introduction 

Genetic algorithms (GAs) are a global optimization technique based on the op~rations 

observed in natural selection and genetics [36]. They operate on string structures, typically a 

concatenated list of binary digits representing a coding of the parameters for a given problem. 

Many such string structures are considered simultaneously, with the most fit of these structures 
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receiving exponentially increasing opponunities to pass on genetically imponant material to 

successive generations of string structures. In this way, GAs search from many points in the 

search space at once and yet continually narrow the focus of the search to the areas of the 

observed best performance. 

Genetic algorithms differ from more traditional optimization techniques in four important 

ways [36]: 

1.) GAs use objective function information (evaluation of a given function using the 

parameters encoded in the sning structure) to guide the search, not derivatives or 

other auxiliary information; 

2.) GAs use a coding of the parameters used to calculate the objective function in guiding 

the search, not the parameters themselves; 

3.) GAs search from many points in the solution space at one time, not a single point; 

4.) GAs use probabilistic rules, not deterministic rules, in moving from one set of 

solutions (a population) to the next. 

5. 1 .2 Generic al~orithm tenninoloc 

To capture the spirit of genetic algorithms, it will be helpful to discuss the language of 

genetics and natural selection as used here. The string structures discussed above are 

equivalent to genotypes in genetics. Genotypes are composed of one or more chromosomes; 

chromosomes are referred to as strings in GAs. The organism formed by the interaction of a 

genotype with its environment is called a phenotype, while in artificial systems, the string 

structures are decoded to obtain a parameter set. A population is composed of many 



www.manaraa.com

L 

l 
L 
L 
l 

L 
l 
l 
L 
L 
L 
L 
L 
L 
L 
L 
L 
l 

50 

genotypes. In genetics, chromosomes are composed of genes, which may take on some 

number of values, called alleles. In genetic algorithms, genes are referred to as features. 

Features may be located at different positions in a string (chromosome). In genetics, this 

position is called the gene's locus. 

Table 3 lists a comparison of the terms used in natural genetics and in genetic algorithms, 

while Fig. 15 shows the relationship of these terms in the context of a sample genotype. If 

there is only one chromosome in a genotype, the~ the string (chromosome) and its structure 

(genotype) could be referred to interchangeably. 

Table 3. Comparison of natural genetics and genetic algorithm terminology 

Genetic Algorithms Natural Genetics Description 

Structure Genotype Total genetic package 

Strings Chromosomes One or more combine to form a total genetic 
package 

Features Genes What chromosomes are composed of 

Values Alleles Values which genes may have 

Position Locus Position of a gene in a chromosome 

Parameter Set Phenotype Organism formed by interaction of the 
genotype and its environment 
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genotype (structure) 

~--------------~~~------------------~ 

chromosome (string) chromosome (string) 
,..--------'A A"------, I I I I xxyyxyxyyyyyxxxx ababbbbbaaaabbaa 

t t 
gene (feature) 

locus (position) = 1 
allele (value)= x 

gene (feature) 
locus (position) = 5 

allele (value) = b 

Figure 15. Comparison of natural genetics and genetic algorithm terminology on a 
representative genotype (structure). Here, a genotype is composed of two 
chromosomes, each of which has 16 genes. 
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5.1.3 Genetic al~orithm notation 

The following notational conventions will be followed throughout the remainder of this 

thesis when discussing GAs. An upper case letter will be used to denote a chromosome, and a 

lower case letter will be used to denote a single gene within a chromosome. Thus, a 

chromosome, A, composed of three genes is represented as A=a 1 a2 a3. An upper case letter 

with an underscore is used to denote a population. Therefore, A={A1, A2, A3, ... ,AN} where 

N is the population size. 

5. 1.4 Schemata 

Before discussing the genetic algorithm operators in detail, it is necessary to describe an 

important concept in genetic algorithms called schemata [36]. Schemata (plural for schema) are 

similarity templates which describe a subset of strings with similarities at certain string 

positions. For example, consider a binary alphabet with an additional symbol, the asterisk, *. 
The alphabet, denoted as ~, is now a ternary alphabet and defmed as 

l: = {0, 1, *}. (17) 

The asterisk in this alphabet is treated as a "don't care" symbol, meaning that it will match any 

of the other symbols in L (The don't care symbol is never actually processed by GAs, but is 

used merely to illustrate the concept of schemata.) Therefore, the string *00 matches two 

strings, { 100, 000}, while the string *0* can match four strings, namely {000, 100, 001, 
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101}. H is used to denote a schema. Thus, if H=*O*, then A= 101 is one example of the 

schema H. 

For an alphabet with a cardinality (number of elements in the alphabet, not including the 

don't care symbol) of k, there are (k + 1)-l schemata, where J. is the length of the string. In the 

previous example, the cardinality of 1:, denoted as 11:1, is 2 and the string length is 3, giving the 

number of schemata as (2 + 1)3=33=27. For any particular string, say 101, there are z3 
schemata represented, (101, 10*, 1*1, 1**, *01, *0*, **1, ***},because each bit position 

may take on its own value or a don't care symbol. Thus, when we consider a population of 

these strings, we can compute lower and upper bounds on the number of schemata contained in 

any population, for a ternary alphabet as in Eq. 17, as 

21. S number of schemata in a population S N · 21. (18) 

where N is the population size. Of course, the number of schemata in any population could be 

computed exactly by knowing the actual value of each of the strings in the population. 

5.1.4.1 Importance of schemata The importance of schemata can best be recognized 

through an example. Suppose the function to be optimized (the objective function), f, is given 

as 

f(x) = x2• (19) 

(Although this is a rather trivial optimization problem, it will serve to illustrate several useful 

points concerning schemata). Suppose funher that a population of four genotypes A= (A 1, A2, 

A3, A4 ) are created randomly. Each genotype has a single chromosome consisting of three 
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genes, at, a2, and a3. Each of the genes is a binary digit, and the chromosome (also the 

genotype in this case because each genotype consists of only one chromosome) is decoded as 

the binary representation of an integer. Thus, the range of values for a genotype is from zero 

(string 000) to seven (string 111). Table 4 contains the four randomly selected genotypes 

along with their decoded values, x, and objective function (fitness) values, f(x). 

Table 4. Example population of genotypes and objective function (fitness) values f(x)=x2 

Genotype N arne Decoded value, x 
Objective Function 

Genotype (Fitness) Value, f(x)=x2 

At 101 5 25 

A2 010 2 4 

A3 110 6 36 

~ 001 1 1 

Given only the fitness values for each genotype in a population, how is the next 

population's overall performance improved? In other words, what information is contained in 

the genotypes which will help guide the search for more highly-fit genotypes? The answer is 

schemata. 

The important role which schemata plays in guiding a search using GAs is demonstrated 

in the following way. Consider each of the genotypes in the example as representing the 

comer of a cube. This cube is shown in Fig. 16 with the genotypes in the population 

appropriately labeled. Recall that each genotype contains 2.1. schemata. Looking at genotype 

At, it is seen that A1 samples not only the single point 101, but also the lines 10*, 1 *1, and 

*01, the planes 1 **, *0*, and **1, and the entire search space***. This last schema provides 
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Figure 16. Cube illustrating the role of schemata in genetic algorithms. The large dots at the 
corners of the cube indicate the genotypes selected in the example (Section 
5.1.4.1). 
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information about the mean of the current population [37]. Because each genotype is able to 

sample 2-l schemata simultaneously, the name intrinsic parallelism is used to describe this 

behavior [36]. In fact, Holland [36,38] has shown that for a population of N genotypes, on 

the order of N3 schemata are usefully processed during each generation! 

By simply scanning the genotypes in Table 4, certain similarities can be seen. The most 

highly-fit strings (those with the highest objective function values) are A1 and A3. Both of 

these genotypes have a value of 1 for gene a 1. Thus, it might be plausible to conclude that the 

plane containing genotypes with the schema 1 **(the back face of the cube, shaded in Fig. 16) 

is a more highly-fit plane than any of the other planes in the cube. In fact, because of the 

binary encoding and the objective function used in the example, this is certainly correct. This 

can be extended further by saying that the line containing genotypes with schema 11 * is more 

highly-fit than any other line in the cube and that the single genotype 111 is more highly-fit 

than any other point in the cube. Obviously, there must be some mechanisms by which the 

initial population can be used to create other populations containing genotypes with more of 

these highly-fit planes, lines, and points. Eventually, of course, the GA should discover the 

optimal point in the search space, in this case, the string 111. The mechanisms by which this 

goal can be realized are discussed in Section 5.1.5 and Section 5.1.6 discusses the relevance of 

schemata in discovering an optimal solution. 

This analysis could certainly be extended to hypercubes and hyperplanes for higher

dimensional strings, but graphing such information is difficult 

5. 1 .4.2 Characterizin& schemata There are many different types of schemata. Two 

devices will be used to characterize a particular type of schema: the schema order and the 

schema defining length. These will be used in the following sections to evaluate what effect 

each of the three basic genetic algorithm operators has on schemata in a given population. 
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Schema order defines the number of fixed positions (positions not occupied by a don't 

care symbol) present in the template and is denoted as o(H). Therefore, o(H) for H= 1 * 1 is 

two, or, alternatively, o(l *1)=2. Similarly, o(1 **)=1. 

The schema defining length is the distance between the frrst and last specific (fixed) string 

positions and is denoted as 8(H). Thus 8(1 *1)=3-1=2 and 8(1 **)=1-1=0. 

5.1 .5 Genetic al&orithm operators 

Three basic mechanisms, or operators, comprise a genetic algorithm. These three 

operators are reproduction, crossover, and mutation. Each will be considered separately in the 

following sections. Reproduction effectively selects the fittest of the genotypes in the current 

population to be used in generating the next population. In this way, relevant information 

concerning the fitness of a genotype (and thus information about relevant schemata) is passed 

along to successive generations. Later (Section 5.1.5.1) it will be shown that GAs actually 

allocate exponenti~ly increasing trials to the most fit of these genotypes. Crossover serves as a 

mechanism by which genotypes can exchange information, possibly creating more highly fit 

genotypes in the process, but most importantly, allowing the exploration of new regions of the 

search space. Mutation is a secondary operator which ensures that no genetic information is 

lost forever during reproduction and crossover. 

Goldberg [36] gives a detailed mathematical analysis of the effect of each of these three 

operators on schemata in moving from one population to the next. The next three sections will 

describe each of the genetic algorithm operators and highlight the analysis presented by 

Goldberg. 
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5.1 .5. 1 Reproduction Reproduction is a mechanism by which the most highly fit 

genotypes in a population are selected to pass on information to the next population of 

genotypes. Genotypes are selected in proportion to their fitness with the current population's 

average fitness. For example, if genotype A 1 's fitness value is twice that of an average 

genotype, say A2, then genotype A 1 should receive twice as many chances to reproduce as 

genotype A2. After a genotype is selected (possibly several times), a copy of it for each 

instance of being selected is placed into a mating pool along with other highly fit genotypes. 

Individuals in the mating pool are then paired up and offspring are produced. The offspring of 

these mates then become the next population. Intuitively, because the fittest of the individuals 

in the current population are selected in proportion to the average of the population, those 

individuals possessing good schemata are reproduced in the next generation. This serves to 

preserve the best schemata found thus far in the search. 

What effect does reproduction have on the schemata contained in a given population? 

Assume at time t that there are m examples of schema H in a population A(t), so that 

m=m(H,t). During reproduction, an individual is selected according to its fitness. Let Pi be 

the probability of selecting genotype i as given by 

(20) 

where fi is the fitness of genotype i, and f fi is the sum of the fitnesses for all strings in the 
i=O 

population. Then, for the next generation, at time (t+l), the number of examples of schema H, 

m(H, t+ 1) is given by 
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(21) 

where f(H) is the average fitness of strings representing schema H at time t, and N is the 
-

population size. Now, let f denote the average fitness of the population as 

Substitution of this term into Eq. 21 gives the schema difference equation [36] 

f(H) 
m(H, t+1) = m(H, t) · -. 

f 

If a schema H remains above average by an amount cf, where c is a constant, then 

(f + cf) 
m(H, t+1) = m(H, t) · _ = m(H, t) · (1 +c). 

f 

(22) 

(23) 

(24) 

Starting at time t=O, a geometric progression or discrete analog of an exponential form is 

obtained and given by 

t m(H, t) = m(H, 0) · (1 +c) . (25) 

This shows that reproduction effectively allocates an exponentially increasing number of 

trials to the most highly fit individuals (those with above average schemata) in a population. 
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However, reproduction alone does not serve to investigate new regions of the search space 

because it only reproduces schemata already present in the current population. 

5.1 .5.2 Crossoyer Crossover is the primary genetic operator which promotes the 

exploration of new regions in the search space. Crossover is a structured, yet randomized 

mechanism of exchanging information between strings. Crossover begins by selecting, at 

random, two individuals previously placed in t.he mating pool during reproduction. A 

crossover point is then selected at random, and the information from one mate, up to the 

crossover point, is exchanged with the other mate: For example, consider two genotypes, each 

consisting of 16 genes. Let A1=xxyyxyxyyyyyxxxx and A2=ababbbbbaaaabbaa, and 

randomly choose the crossover point to be six. Before crossover and showing the crossing 

point with a vertical bar, 

and after crossover 

A1=xxyyxy 

A2=ababbb 

A1=ababbb 

A2=xxyyxy 

xyyyyyxxxx 

bbaaaabbaa 

xyyyyyxxxx 

bbaaaabbaa 

In this example, there is only one crossover point; more crossover points could have been 

selected, in which case more information would be exchanged between the two mates. 

However, as the number of crossover points increases, the probability of breaking good 

schemata also increases. 
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Now, the effect of crossover on schemata will be discussed. In Section 5.1.4.2, the 

definition of a schema defining length was given as the distance between the f:arst and last fixed 

string positions, denoted as S(H). Introducing the crossover operator, the probability of 

destroying a schema H, Pd(H), is 

(H)= S(H) . 
Pd (.l- 1) 

(26) 

Thus, the probability of survival for schema H, p5(H), is 

Ps(H) = 1 - Pd(H). (27) 

If the probability of a crossover occurring for any particular mating is denoted as Pc, then 

( 
S(H) ) 

Ps(H) ~ 1 - Pc . · 
.l -1 

Combining the effects of reproduction and crossover gives 

m(H, t+1) ~ m(H, t) · f(H) · [ 1- (Pc · o(H) )] 
(.l - 1) . 

f 

(28) 

(29) 

It is apparent that schemata with short defining lengths are more likely to survive 

crossover than those with long defming lengths. 
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5.1 .5.3 Mutation The third of the genetic algorithm operators is mutation, and is 

generally thought of as a secondary operator. Mutation ensures that no string position will ever 

be ftxed at a certain value for all time. Mutation operates by toggling (in a binary alphabet) any 

given string position with a probability of mutation, Pm· This operator is typically applied to 

the offspring, after crossover, before completing the generation of the new population. Thus, 

the probability of survival for a given allele (value) is (1 - Pm>· 

A given schema H survives only when each of the o(H) fixed string positions within the 

schema survive; therefore, the probability of a schema surviving mutation is (1- Pm)o(H). For 

very small values of Pm, Pm << 1, the probability of survival for schema His approximately 

(1- (o(H) · Pm))· 

Now, combining the effects reproduction, crossover, and mutation, the number of 

examples of schema H in the next generation is given by 

f(H) [ ( 8(H) ) J m(H, t+l);?! m(H, t) ·--::- · 1- Pc · (.l _ l) - (o(H) · Pm> • 

f 

(30) 

This indicates that low-order schemata are more likely to survive mutation than high

order schemata. The addition of the mutation operator does not alter the effects of reproduction 

and crossover much. It merely exists to be certain that genetic information is never 

permanently lost as the search proceeds. 
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5.1.6 Building blocks 

In the preceding sections, it was shown that schemata with above-average fitness values, 

shon defining lengths, and low-order are given an exponentially increasing number of trials as 

the search progresses. This is a fundamental conclusion in genetic algorithms and is called the 

Schema Theorem or Fundamental Theorem of Genetic Algorithms [36]. These highly-fit, 

short, low-order schemata are termed building blocks. Just as a building is constructed from 

the ground up by using many small, strong bricks, strings in a genetic algorithm are 

constructed by reproducing short, low-order, highly-fit schemata and exchanging this 

information between strings. Thus, the best strings in a given population are reproduced and 

allowed to share, with other highly-fit strings, the information that has allowed these to strings 

survive. 

A brief discussion of these building blocks should prove enlightening. What do these 

building blocks look like and how do they help to create more highly-fit strings? A graphical 

technique borrowed from Goldberg [36] will be used to answer these questions. 

Recall from the example in Section 5.1.4 that the plane containing genotypes with the 

schema 1 ** was the most highly-fit of the planes in the cube. To see how this plane relates to 

the objective function f(x)=x2, Fig. 17a shows a plot of the objective function overlaid with the 

schema represented by 1 ** (shown by the shaded region). It can be seen that the information 

in this schema captures values of x2 which are larger than those that fall outside of the shaded 

region (those represented by the schema 0**). Note that the graphs are plotted from zero to 

eight, not zero to seven. This is done to aid the visualization of the schema. Therefore, the 

shaded regions are inclusive on the left side and exclusive on the right side. For example, in 

Fig~ 17a, the shaded region includes the values ranging from four (inclusive), to eight 

(exclusive). Likewise, plots of schema 1 *1 in Fig. 17b, and schema **1 in Fig. 17c show 
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what information about the objective function is captured by each of these schemata. It should 

be noted from these figures that each of the schemata captures some information about the 

fittest string, 111 (the string sought during optimization), and therefore it can be concluded that 

all three of these schemata must contain important information regarding this string. As 

counter examples, consider Figs. 17d-f. These figures contain overlays of the schemata, 0**, 

*0*, and **0, respectively. Note that none of these schemata contain information about the 

optimal string. This means that the GA is better off searching further with each of the schemata 

in Figs. 17a-c, than the schemata in Figs. 17d-f. From the earlier analysis, this is exactly what 

the genetic algorithm is designed to do. Each of\ the schemata in Figs. 17a-c are highly-fit, 

possess a short defining length, and are of low-order. Again, this analysis holds for higher

dimensional strings. 
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Figure 17a. The objective function f(x)=x2 overlaid with the schema 1 **. 
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Figure 17b. The objective function f(x)=x2 overlaid with the schema * 1 *. 
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Figure 17c. The objective function f(x)=x2 overlaid with the schema **1. 
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Figure 17d. The objective function f(x)=x2 overlaid with the schema 0**. 
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Figure 17 e. The objective function f(x)=x2 overlaid with the schema *0*. 
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Figure 17f. The objective function f(x)=x2 overlaid with the schema **0. 
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5.2 Application of Genetic Algorithms to the Optimization of Weights 

in Neural Networks 

As discussed in Chapter 2 and Chapter 3, the backpropagation learning algorithm has 

several disadvantages associated with it. These include local minima, activation function 

restrictions (the activation function must be continuous and differentiable), lack of generality 

for arbitrary network architectures, and long training times for very complex problems, due to 

the iterative, single-threaded nature of the algorithm. This section introduces the application of 

genetic algorithms to the optimization of weights in neural networks. This genetic-based 

learning (GBL) algorithm has the capability of solving all of these problems. 

5.2.1 Chromosomes 

First, the information to be optimized must be properly encoded so that an appropriate 

representation may be developed. Because the goal of genetic-based learning, as presented in 

this chapter, is to optimize the weights in a neural network, each weight in a network must be 

encoded. Therefore, I will let each weight be binary encoded with a number of bits, b. Each 

of these weights represents a chromosome. Decoding the chromosome is done by first 

computing the integer representation of the binary encoding and then mapping this decoded 

value into a predefined weight range. For example, if eight bits are used to encode a weight, 

then there are 2b=28=256 possible decoded values which the weight may have. Suppose a 

range of ±8.0 is chosen for the weights. A decoded weight parameter would then be mapped 

into this range by 
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(31) 

where w is the final analog weight value, wH is the highest possible weight value ( +8.0), wL is 

the lowest possible weight value ( -8.0), b is the string length (8 bits), and p is the decoded 

parameter. w would then be the value used for the weight represented by its corresponding 

chromosome in the network. For example, suppose the string representing weight w1 is 

10110100. The decoded value of this string, p, is 180, and the actual weight value would be 

Wt = 8·0 - ~-8.0) · (180) + (-8.0) = 3.25. 
2 

(32) 

Note that there is no longer a smoothly varying function of the weights (as in 

backpropagation) because the weights can take on only discrete values, dictated by b and the 

range of weights, determined by wH and wL. This implies a resolution of the weights, Wr, of 

(33) 

r-· 

Therefore, the solution found by the algorithm will be limited by this weight resolution 

discretization. In this case, with wH=+8.0, wL =-8.0, and using eight bits to encode each 

weight, there is a resolution of wr=0.0625. However, this resolution can be made as fine as 

desired by simply increasing the number of bits used for the encoding. 
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5.2.2 Genotypes 

Next, the genotypes must be defined using the chromosomes. A genotype for genetic

based learning will be the concatenation of all weights in a given network. For example, using 

the network created to solve the XOR problem in Fig. 4 (Section 2.2), there are a total of nine 

weights in the network--three each on the two hidden neurodes and three on the output 

neurode. In this case, a genotype would consist of nine chromosomes as defined in Section 

5.2.1. Using eight bits to encode each weight, there would be (8)(9)=72 bits in a genotype. 

5.2.3 Population 

A population is a collection of genotypes which are evaluated simultaneously during the 

search. For example, there may be 100 genotypes in a population at time t, all of which have 

their objective functions evaluated on the basis of their decoded parameters (weights) and the 

training set at time·t. Reproduction, crossover, and mutation then take place on the current 

population. These three operators (Section 5.1.5.1 - Section 5.1.5.3) produce 100 new 

genotypes, which are considered to be the next population, at time (t+ 1). The process of 

creating a new population of genotypes from the current population continues until the search is 

completed. 
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5.2.4 Al~orithm 

Having discussed the genetic algorithm operators in Section 5.1.5 and having established 

the coding of chromosomes and genotypes, the algorithm for optimizing weights in neural 

networks can now be developed. First, for a given problem, the size of the network is 

specified. For purposes of this thesis, all of the networks will have an input layer, one hidden 

layer, and an output layer, fully connected in a feed-forward manner. Next, a population of 

genotypes is created. A single genotype is created by randomly creating a chromosome for 

each weight in the network. Each member of the population is then evaluated by running the 

specified network architecture in a forward manner for all pairs in the training set and 

computing the mean squared error (MSE) for this genotype. The definition of the MSE, as 

used in my simulations, is presented in Section 5.2.7 when discussing the fitness value of a 

genotype for genetic-based learning. For a given generation (a generation being a time step), 

this evaluation is done for all of the genotypes in the population. Thus, there is now a fitness 

value for each of the genotypes in the population. These fitness values are used for 

reproduction, crossover, and mutation, as discussed in Section 5.1.5. A new population of 

genotypes has now been created, and the process starts over by evaluating each of the 

genotypes using the training set. For clarity and consistency, a flow graph of this process is 

presented in Fig. 18. 

5.2.5 Genetic diyersjty 

An important detail which has been neglected thus far is that of genetic diversity. The 

term genetic diversity refers to the similarity (or dissimilarity) between genotypes in a given 
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Create initial population 

Compute Statistics 

Reached 
an 

"optimal" 
solution? 

Perform selection and reproduction 

Create the mating pool 

Perform crossover of selected mates 

Perfonn mutation on the new genotypes 

Figure 18. Genetic-based learning flow chart 

DONE 
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population. For example, if all of the genotypes in a population have the same chromosome 

value for each chromosome, then there is no genetic diversity--all genotypes have the same 

fitness value because they are all exactly the same. When this happens, all genotypes have an 

equal chance of reproducing, the mating pool is filled with genotypes which all represent the 

same network, and crossover alone will no longer be able to sample new hyperplanes. The 

only method left for exploring new regions of the search space is that of mutation, and if the 

rate of mutation is very small (much less than unity), then the search will have effectively 

s~agnated due to lack of genetic diversity. Ideally, genetic diversity should remain high, 

allowing for the investigation of new solutions through the primary operation of crossover. 

Mutation should only serve to be certain that no gene allele is ever fixed for all time. Several 

parameters (Section 5.2.6), as well as several improvements to the basic genetic-based learning 

algorithm (Section 5.3) can help to prevent a lack of genetic diversity. 

5.2.6 Parameters 

Just as learning constants a and 11 must be appropriately chosen in the backpropagation 

learning algorithm, there are several parameters which must be selected in genetic-based 

learning. The following will discuss each of these parameters separately and suggest typical 

values selected in my simulations. 

5.2.6.1 PQpularion size. N The size of a population for a given problem can be a 

crucial factor maintaining genetic diversity and, thus, in finding an optimal solution. A larger 

population implies increased genetic diversity by sampling more points in the search space 

simultaneously. However, a larger population also requires more function evaluations during 
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each generation. For example, a population of 100 genotypes requires 100 forward passes 

through the network for each input-output pair in the training set. Therefore, training a 

network to perform the XOR problem, would require 400 forward passes per generation. If 

the population size is increased to 1000 genotypes, then 4000 forward passes per generation 

would be required. Clearly a compromise between genetic diversity and search time must be 

made. As a rule of thumb I generally choose to use between 4 and 10 genotypes for every 

input-output pair in the training set and for every output neurode. Thus, for the XOR problem 

with four input-output pairs and a single output neurode, I would use between 16 and 40 

genotypes. For a problem such as a two-bit adder (Section 6.4.4) with 16 input-output pairs 

and three output neurodes, between 192 and 480 genotypes would typically be used. 

5.2.6.2 Crossover rate. Pc From experience in running my simulations, the crossover 

rate, Pc, plays a less important role in finding an optimal solution than does the population size. 

This parameter controls how often a pair of mates selected during reproduction actually 

exchange information during crossover. For instance, if Pc= 1.0, then every mating exchanges 

information between the mates during crossover over. However, if Pc=0.5, then on average, 

only one half of the matings will exchange information. 

The crossover rate has several effects. First, a higher crossover rate means that more 

information is exchanged between genotypes during each generation, implying that more of the 

search space may be investigated during each generation. Second, as the search progresses 

and the average fitness of the population increases, a higher crossover rate will tend to destroy 

highly fit genotypes by splitting good schemata. I have found that a crossover rate of 0.5 

works well and use this as a default in my simulations. Other rates have been explored, but 

using 0.5 seems to work well over a variety of problems. 
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5.2.6 3 Number of crossoyer points When performing crossover, more than one 

crossover point may be selected. Doing so increases the amount of information that is 

exchanged between genotypes each generation. However, selecting too many crossover points 

increases the probability of breaking good schemata (see Section 5.1.5.2). All of my 

simulations use a single crossover point. 

5.2.6.4 Mutation rate. Pm As discussed in Section 5.1.5.3, mutation is a secondary 

genetic operator serving to ensure that no bit position is ever fixed for all time. It should have 

only a minor impact compared to the primary operators of reproduction and crossover. Typical 

values of the mutation rate, Pm, used in my simulations range from 0.2 to 0.0001. Later, an 

adaptive mutation operator will be presented which can help to maintain genetic diversity, 

especially when using smaller populations. This adaptive mutation operator can actually play a 

much larger role in exploring the search space than using a non-adaptive mutation operator and, 

therefore, behaves with properties similar to a primary operator. 

5.2.6.5 Chromosome strinK len&th. b Chromosome string length refers to the number 

of bits, b, used to encode each weight in the network. b determines the number of discrete 

values which any weight can take on during the search. For the binary encoding used here, 

this number of discrete values is 2b. Again, there is a tradeoff when choosing b. Larger 

values of b give a more smoothly varying function of the weights due to the finer granularity of 

weight values. However, larger values of b also require more steps when processing the 

genotypes during reproduction, crossover, and mutation. Typical values of b in my 

simulations are 8, 16, and 32. 
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5.2.6.6 Weight range, wH and wL The weight range specifies the maximum (wH) and 

minimum (wL) values which each weight in the network may have. Therefore, a range which 

is. too narrow can limit the number of possible solutions or even eliminate the optimal solution 

and thus prevent the network from converging to an "optimal" or acceptable solution. The 

weight range also determines the resolution of the analog weight values, as discussed in 

Section 5.2.1. Typical weight ranges in my simulations include ±16.0, ±32.0, and ±64.0. 

5.2.7 Fitness yalue 

In order to select individuals to be placed in the mating pool during reproduction, it is 

necessary to evaluate each of the individuals based on some criterion. This criterion is known 

as the objective function, which produces a fitness value. Because the goal of genetic-based 

learning in neural networks is to optimize the weights of the network, each individual must be 

evaluated on the training set The typical measure of a network's performance on the training 

set is the Mean Squared Error (MSE) given by 

T K 
1 ~ ~ 1\ 2 

MSE = T £..J £..J (ytk- Ytk) (34) 

t=l k=l 

where T is the number of input-output pairs in the training set, K is the number of output 
1\ 

neurodes, Ytk is the target value for the kth output neurode, and Ytk is the network estimate of 

Ytk· In order to increase selective pressure for networks with multiple output neurodes, I have 

modified this MSE slightly by dividing not by T, but by TK. Therefore, as implemented in my 

GBL algorithm, the MSEoaL is 
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T K 
1 ~~ 1\ 2 

MSEoaL = TK £..J £..J (ytk- Ytk) · (35) 

t=l k=l 

The MSEoBL will serve as the objective function for the genetic-based learning algorithm. 

However, because genetic algorithms generally work as function maximizers, the fibless value 

for a genotype is the inverse of MSEoBL· 

5.3 Genetic-Based Learning Enhancements 

A comparison of backpropagation learning and genetic-based learning is given in Chapter 

6. That chapter also includes a discussion of the computational requirements of each of the 

algorithms. This section will present several additions and variations made to the standard 

genetic-based learning algorithm presented earlier. These variations are designed to foster a 

better search, while at the same time reduce the number of generations needed to reach an 

acceptable solution. Not only is backpropagation compared with GBL, but the standard GBL 

algorithm is compared with various algorithms employing the following enhancements. The 

results in Chapter 6 will clearly show the necessity of these learning enhancements. 

5.3.1 Elitist model 

One of the problems encountered early in my simulations using the standard genetic 

algorithm operators was that the fitness value of the best individual in the population often 
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fluctuated. By this I mean that in moving from one generation to the next, the highest fitness 

value in the population might actually decrease, rather than increase. A typical cause of this 

was that the best solution found up to the current population would be lost due to sampling 

error, crossover, mutation, or some combination of all three. Further, these operators did not 

produce an individual of equal or greater fitness during this generation. The elitist model 

[39,40] is meant to remedy this problem. 

In essence, the elitist model ensures that the best individual is never lost in moving from 

~ne generation to the next, unless a more superior individual is created through the GA 

operators. In practice, my implementation first performs all of the reproduction, crossover, 

and mutation operators as specified above. Then, if the most fit individual created by these 

operations is weaker than the previous most highly fit individual, the weakest individual in the 

newly created population is replaced by a duplicate of the previously most fit individual. It 

may happen (and hopefully so) that an individual is created by other matings which has a better 

fitness than that which was the previous best, in which case, this new individual becomes the 

most fit in the next population and is consequently preserved during the next reproduction, 

crossover, and mutation period, if necessary. 

In Chapter 6 it will be seen that using an elitist model can have a very positive effect on 

the number of generations required to find an acceptable solution. 

5.3.2 Slidin1 window to induce selective pressure 

Another problem that can occur in using genetic algorithms is associated with selective 

pressure. Selective pressure relates to the manner in which individuals are selected for 

reproduction. Although genotypes are selected in accordance with their fitness value relative to 
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the rest of the population, it can often happen, especially during the initial stages of the search, 

that all of the individuals have fitness values which are nearly the same. I found this to be 

especially true when training larger networks and networks with multiple output neurodes. 

The latter case is the reason for using a modified MSE measurement as given in Section 5.2.7. 

When all (or nearly all) of the individuals have similar fitness values, the search can stagnate 

because those individuals which possess even slightly higher fitness values may not, due to the 

probabilistic nature of the selection mechanism, receive more chances during reproduction than 

those with slightly lower fitness values. For example, suppose that at a cenain generation, all 

of the genotypes have fitness values, f(x), in the range 45 < f(x) < 55. It is clear there is not 

much deviation among the genotypes. However, if a new parameter, fmin, is defined to be 40, 

and this value is subtracted from all of the genotypes' fitness values before selection, then a 

genotype with a value of 55 originally would now appear to have fitness which is three times 

as great as a genotype with a value of 45 originally. If this scaling is not performed, then the 

relative difference between these two genotypes would be about 1.2 times; a small relative 

difference which can easily become lost due to sampling error. 

In my simula~ions, I chose to use a scaling window of one, meaning that the minimum 

fitness value from the population which immediately preceded the current population is used as 

the value of fmin· Another nice feature of using a sliding window to help induce selective 

pressure is that it will typically have more effect during the initial stages of the search when all 

of the networks have random weights, and, therefore, nearly the same fitness values. As the 

search progresses, the minimum fitness value will commonly remain quite low with respect to 

the average and best individuals. If this is the case, then the sliding window will have little 

effect on the rest of the search because subtracting this minimum value will not change the 

relative fitness values between the individuals much. The sliding window tends to provide 

more pressure at the beginning of the search where it is needed, yet not interfere with the 
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search in the later stages where one would like to see only the genetic algorithm operators play 

the major roles. 

This enhancement mechanism is used where noted in the following chapters. 

5.3.3 Adaptive mutation Qperators 

Another problem often encountered, and discussed briefly in Section 5.2.5, is that of a 

lack of genetic diversity. With the selection mechanism used in my simulations, if an 

individual which is much superior to the rest of the population is created, then that individual 

will often receive an abundance of reproductive trials when generating the next population. In 

fact, if the individual is very much superior, it could happen that the entire mating pool consists 

only of copies of this individual. When this happens, that individual dominates the population 

and the search will stagnate because new regions of the search space can not be explored by the 

primary operator, crossover. This phenomenon is termed a lack of genetic div~rsity. 

Several methods for maintaining genetic diversity have been explored [37,41,42]. The 

one I chose to implement is a variation of one proposed by Whitley and Hanson [37] which I 

call a weighted Hamming distance (WHD) adaptive mutation operator. I will first discuss the 

operator employed by Whitley and Hanson and then follow with a discussion of several 

variations as devised by me. 

The adaptive mutation operator used by Whitley and Hanson adjust the probability of 

mutation dependent upon the genetic diversity of the current population. Therefore, there is no 

longer a constant mutation rate, but rather one that varies within a predetermined range. In 

order to adjust the mutation rate, a method of measuring genetic diversity must be developed. 

As a heuristic, the distance between two genotypes during a mating is calculated. This distance 
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measurement is designed to determine the similarity between two genotypes. Measuring the 

distance between two genotypes provides a rough measure of the diversity of the population. 

The method used in calculating the distance can produce significantly different results, and this 

is where I propose several alternative methods to the one employed by Whitley and ~anson. 

Whitley and Hanson chose to use a direct Hamming distance (HD) measure, where the 

Hamming distance is defined to be the number of bits in which to strings differ. The lower this 

Hamming distance, the higher the mutation rate. A lower Hamming distance implies that the 

two mates are very close to one another in bit-wise manner, and therefore are relatively closely 

related in their weight values. 

Determining the actual probability of mutation for any mating is a simple exercise. First, 

an allowable range for the mutation probability is selected, given by the upper bound of 

mutation, Pmu' and lower bound of mutation, Pml· If the Hamming distance between two 

genotypes during a mating is HD, then the probability of mutation, Pm, is given as 

[ (HD -HD) ]'1.. 
Pm = <Pmu - Pml) ;;;max + Pml ' (36) 

where HDmax is the maximum Hamming distance which could occur between any two 

genotypes. A squared adaptive mutation probability is used because it was found by Whitley 

and Hanson that this tended to work better than a linear operator. I have also found similar 

results. Using Whitley and Hanson's method, HDmax is equivalent to the total length of a 

genotype, given by 

(37) 

where WT is the total number of weights in the network. 
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For example, if eight bits, b, are used to encode any weight in a network, the range of 

weights (wH and wL) is ±8.0, and a genotype is represented by two weights, where genotype 

one, G1, is 0010110111001101, and genotype two, G2, is 0010110Q1100110Q., then by Eq. 

31, the first weight for 0 1, w11, is -5.1875 and the second weight for Ot, w12, is 4.8125. 

Likewise, the first weight for 0 2, w21 , is -5.25 and w22, is 4. 75. In this case WT=2, 

HDmax=(8)(2)=16, HD=2, and let Pmu=0.3 and Pmt=0.001, then Pm=0.0689712. The 

difference between these two genotypes (noted by .the underlined bits), both in actual number 

of differing bits and the analog weight values represented, is small, meaning that the two 

networks represented by these genotypes are essentially similar. Because the networks 

represented by these two genotypes are very similar, increasing the probability of mutation will 

help to explore new regions of the search space. Crossover alone on these two genotypes will 

not produce new genotypes which substantially vary from the two mates, thus not sampling 

different regions. Now, if 0 2 is changed to be !0101101Q1001101, then w21, is 2.8125 and 

w22' is -3.1875. Even though the two genotypes differ by only two bits, the difference in the 

analog weight values represented by the genotypes is significant. A Hamming distance 

measurement would still measure this distance as being two, the same as in the previous, and 

would maintain a relatively high probability of mutation even though the networks represented 

are quite different 

When using binary encoded parameters as done in genetic-based learning, a direct 

Hamming distance measure does not accurately reflect the distance by which two strings differ. 

A one bit difference in a binary encoded parameter means much more when it occurs in the 

most significant digit (MSD) than it does when it occurs in the least significant digit (LSD). 

Therefore, I propose using a weighted Hamming distance measure which accounts for the 

position in which bits differ. I have experimented with three methods of weighting the position 
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of bit difference. These methods are linear weighting (LinWHD), Iog2 weighting (LogWHD), 

and power weighting (PowWHD). Each of these modifies only HDmax and HD in Eq. 36. 

A linear weighting increases the Hamming distance measure by a linear amount 

proportional to the position in which it occurs within a weight parameter. In my 

implementation, a difference in the LSD of a weight increases HD by one, a difference in the 

next LSD increases HD by two, and so, until the MSD, in which HD is increased by the length 

of the weight parameter string. Therefore, the maximum HD possible between two genotypes 

~s given by 

LinWHDmax = (b+l) ( ~) WT. (38) 

For a linear weighting method, in the frrst example above, HD=2 and Lin WHDmax=72, giving 

Pm=0.0850856. In contrast, for the second example, HD=8+8=16 and Pm=0.054548. 

Because the difference in actual analog weights for the second example is greater than for the 

ftrst example, there is actually more genetic diversity in the population in the second example, 

and therefore, the mutation probability should be lower. This is represented in using the linear 

weighting method. 

The log2 weighting method is similar to the linear weighting method, but on a log2 scale. 

If P represents the position in which the bits differ within a weight, then as the position 

increaSes in significance (moves from LSD to MSD), HD is increased by log2f3· Here, 

b 

LogWHDmax = Wy I, log2(i). 
i=l 

(39) 
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In the frrst example above, LogWHDmax=30.598416, HD=log2(l)+log2(1)=0; therefore, 

Pm=0.090. In the second example, HD=log2(8)+log2(8)=6 and Pm=0.0582592. Notice that a 

log2 weighting method maintains a relatively higher mutation probability than the linear 

weighting method. 

The third and final method of weighting the Hamming distance is a power weighting. 

This method is based on increasing HD by 2 to the power of the position, (3, in the which the 

bits differ. In this method 

b 

PowWHDmax = WT L 2i. 
i=O 

(40) 

Again, using the first example above PowWHDmax=l022, HD=21+21=4, giving 

Pm=0.089299. In the second example, HD=28+28=512 and Pm=0.0225623. For 

convenience, Table 5 compares the value of Pm for each of the adaptive methods. 

Table 5. Comparison of adaptive mutation operators on the two examples presented in this 
section 

Adapttve Distance for Pmfor Distance for Pmfor 
operator HDmax example#! example#! example#2 example#2 

HD 16 2 0.0689712 2 0.0689712 

LinWHD 72 2 0.0850856 16 0.0545480 

LogWHD 30.598416 0 0.0900000 6 0.0582592 

PowWHD 1022 4 0.0892990 512 0.0225623 
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Which, if any, of these adaptive mutation methods is the best? After running many 

simulations, one method still does not stand out clearly as "the optimal" adaptive mutation 

method for all problems. However, in Chapter 6, I will compare two of these methods on a 

suite of binary test mappings. These two methods are the unweighted HD method and the 

power weighting HD method. It is enlightening to visualize the difference between these 

methods when selecting a probability of mutation for two genotypes during a mating. 

Consider two four-bit strings, in which one string is held constant, at a value of 0000 

(decoding to a value of zero), while the other string is varied between zero (0000) and 15 

(1111). Figure 19 shows the result of plotting the value of Pm for each of the adaptive 

mutation methods versus the number represented by decoding the second string. Note that the 

power weighting method provides a smoothly varying function of Pm as the difference in 

analog weight value increases. Clearly this is closest to what is desired. As the difference in 

the decoded parameters increases, Pm decreases. In contrast, with the other three methods, the 

value for Pm can jump up and down, quite dramatically in some cases. 

It was noted in Section 5.2.5 that one method of helping to maintain genetic diversity was 

using a large population. However, this also involves more computation in evaluating each 

population. With these adaptive mutation operators, the population size can be reduced, yet 

still maintain good genetic diversity [37]. In Chapter 6, however, I will use the same number 

of individuals for each of the test cases in order to be able to compare performance more 

directly. 
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Figure 19. Comparison of adaptive mutation methods on two four-bit strings. 
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5.3.4 Parallel implementation 

Perhaps the greatest improvement that can be made to the genetic-based learning 

algorithm is to parallelize it. It may be apparent by now that a great deal of the computation 

involved in performing a genetic search is done by operating on individuals or pairs of 

individuals. In fact, the only operations which involve considering the entire population 

simultaneously are that of selection, reproductio~, and shuffling to create the mating pool. 

Selection operates only on the computed fitness values, not on the genotypes directly, 

reproduction involves simply copying the individuals' indices into a temporary array, and 

shuffling is a randomization of this array. All three of these operations are quite simple and can 

be implemented efficiently. The remaining operations, objective function evaluation (operating 

each of the networks in a feed-forward manner over the entire training set and computing the 

MSE), crossover, and mutation are all performed on single individuals or pairs of individuals. 

The objective function evaluation is the most time consuming of these operations, particularly 

for large mapping problems and/or large networks. Crossover involves bit copies and swaps, 

and mutation involves bit operations (bit toggles) on individuals when necessary. 

Therefore, much of the work done by the genetic-based learning algorithm can be 

performed in parallel by splitting the population into disjoint subpopulations and operating in 

parallel on these subpopulations where appropriate. Selection, reproduction, and shuffling 

must be performed by a single processor. This merely involves synchronizing the parallel 

processes through a signalling mechanism. Figure 20 is a flow chart illustrating this parallel 

implementation. 

All of the results for the GBL simulations presented in Chapter 6 were accomplished 

using this parallel algorithm. Chapter 6 will also discuss the implementation of this algorithm. 
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ombtne Statisncs From theN Processors 
(Po) 

Create the Mating Pool (shuffle) 
(Po> 

Figure 20. Flow chart of the parallel implementation of genetic-based learning. 
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It should be noted that I have been able to achieve linear petfonnance improvement over a 

pmely serial algorithm using this parallel algorithm. 

5.4 Conclusions 

This chapter has introduced a learning algorithm, genetic-based learning, which uses the 

operations and mechanisms observed in natural selection and genetics. This learning algorithm 

has the potential for solving several of the disadvantages associated with the backpropagation 

learning algorithm (Chapter 3), most notably avoiding local minima, being robustly applicable 

to networks with arbitrary architecture and topology, and to neurodes which have activation 

functions which may not be differentiable, or for which it may be costly to compute its 

derivative. Funher, and perhaps most importantly from a learning time standpoint, this 

learning algorithm is quite naturally and easily implemented on massively parallel computers. 

The parallel algorithm developed in Section 5.3.4 is designed for a shared-memory, multi

processor machine., and I believe this type of machine is best suited for the implementation 

presented in that section. A message-passing machine would involve far too much overhead in 

order to be able to achieve the linear petfonnance improvement I have seen. 

Genetic-based learning, though, does have some drawbacks. First, even when 

implemented in parallel, the time required for evaluating a population on very large problems 

and networks may become unacceptable, although to date this has not been the case. 

However, if, as will be shown in Chapter 6, genetic-based learning requires fewer iterations 

(generations) than backpropagation learning, then this may not pose a problem. Second, on 

even modestly sized networks, this algorithm uses a large amount of memory. Scaling the size 

of the networks up increases the memory usage by an amount proportional to the population 
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size. Unfortunately, as the size of the network and the mapping being solved grows, so too 

must the size of the population. 

In all, I have seen very good performance from this learning algorithm and believe it 

P?Ssesses several desirable characteristics which backpropagation lacks. As interest increases 

and research progresses into using genetic algorithms for optimizing neural networks, some of 

its limitations and problems will certainly be overcome. 

As a concluding remark, I believe that GBL can, and should, be used for purposes other 

than just optimizing the weights in a neural network. I envision using this learning paradigm to 

configure the network architecture, the activation functions employed by the neurodes in the 

network, and the parameters used by the activation functions in computing a neurode's output 

values, just to name a few. 
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6 COMPARISON OF BACKPROPAGATION AND 

GENETIC-BASED LEARNING 

6.1 OveiView 

This chapter presents a comparison of the backpropagation learning algorithm (Chapter 3) 

and the genetic-based learning algorithm (Chapter 5). This comparison is based on several 

points. The first is an analysis of the computational and memory requirements for each of the 

algorithms. Much research has been put forth recently [20-25] in ways to reduce tlie training 

time of networks. Most of this research has focused on heuristic and theoretical methods of 

improving backpropagation by reducing the number of iterations required to obtain a good 

solution. It will be shown in this chapter that genetic-based learning often requires many fewer 

iterations (generations) than does backpropagation. Further, while each iteration of the genetic

based learning algorithm requires more processing than an equivalent backpropagation 

iteration, the genetic-based algorithm is quite naturally and easily implemented in parallel with 

linear (or near linear) speed up. 

6.2 Computational Requirements of the Backpropagation Learning Algorithm 

Part of the process of evaluating different learning mechanisms is to evaluate the 

computational requirements of the algorithms. This section presents an analysis of the 
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approximate number of floating point operations and memory requests required during the 

backward pass (the learning phase) of the backpropagation learning algorithm. In Section 6.3, 

an analysis of similar requirements for genetic-based learning will be given. Because both 

paradigms utilize the same algorithm during the forward pass, the analysis of this pass will be 

omitted; only the learning phase of each algorithm will be analyzed. 

It will be helpful to refer to Fig. 7. I will assume that a momentum term with a batch size 

ofT is being used for backpropagation and that a J!etwork with an input layer, a single hidden 

layer, and an output layer is being used. Let L1 denote the number of neurodes in the input 

layer, LH denote the number of neurodes in the hidden layer, and Lo denote the number of 

neurodes in the output layer. The backpropagation learning phase can be broken down into 

five steps. Because of the hatching property, the first four steps (BP01-BP04) occur T times 

for each single change of the weights. 

The first step is to calculate error signals for each of the output neurodes. Referring to 

Eq. 3, for each output neurode, this requires two memory reads (one to recover the output of 

the neurode and one to get the target value for this iteration for the current neurode), one 

memory write (to store the result), two subtractions, and two multiplications (recall that the 

derivative for the sigmoidal activation function can be computed with a single subtraction and a 

single multiplication as shown in Eq. 13). The number of operations required for this frrst 

step, BP01, is 

BP01 = T Lo [ 2 read+ 1 write+ 2 sub + 2 mult]. (41) 

The second step is to calculate and update the change in weights for each of the output 

neurodes. The update is necessary for hatching purposes, which requires a read to recover the 

accumulated value for the change in weights and an addition of the newly calculated value. For 
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each output neurode, there are (LH+1) weights, including the bias weight. Referring to Eq. 4, 

calculating the change in weights for the current input-output pair involves three memory reads 

(one for the learning rate a, one for the error signal, and one for the input value on the 

corresponding weight), one write (to store the result), and two multiplications, in addition to 

recovering the accumulated value and updating this value, which gives 

BP02 = T (LH + 1) [4 read+ 1 write+ 2 mult + 1 add]. (42) 

The third step occurs after moving down to the hidden layer. The error signals for each 

of the hidden neurodes is calculated. This calculation differs slightly from the output layer 

error calculation, as shown in Eq. 6. This involves a read to recover the output value of the 

neurode plus two additional reads for each output neurode, one each for the interconnection 

weight and the error signal. In addition, for each output neurode one multiplication is required. 

Finally, one subtraction and two multiplications are needed to complete the error signal 

calculation. In total, 

BP03 = T LH [ (1 + 2Lo) read+ 1 write+ Lo (1 mult) + 1 sub+ 2 mult]. (43) 

Step four is similar to step two, in that calculating the change in weights involves four 

reads, one write, one add, and two multiplications, thus 

BP04 = T (L1 + 1) [4 read+ 1 write+ 2 mult + 1 add]. (44) 
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Finally, step five changes all of the weights in the networks. This occurs only once for 

every T input-output pairs. For each weight, as shown in Eqs. 8 and 9, this requires four 

reads, one write, two additions, and one multiplication, giving 

BPOs = [Lo (LH + 1) + LH (L1 + 1)] [4 read+ 1 write+ 2 add+ 1 mult]. (45) 

Combining all five of these steps, the total number of operations required for a single, 

backward learning pass, BPOtotal, is 

BPOtotal = [LH(4LJ+4Lo+5T) + 2Lo(2+T+LHT) + T(8+4LI)] read+ 

[LH(1+LJ+Lo+4T+LoT) + Lo(l+2T) + T(4+2LI)] mult + 

[LH(l+LJ+Lo+2T) + L0 (1+T) + T(2+L1)] write+ 

[2LH(l +Lp-L0 ) + 2Lo + T(2+Lff+L1)] add+ 

[T(LH + 2Lo)] sub. (46) 

Using the XOR mapping problem as an example with two input neurodes, two hidden 

neurodes, a single output neurode, and four input-output pairs, BPOtota1=156 read+ 89 mult + 

45 write+ 38 add+ 16 sub. Doing the same for the most difficult of the test cases, adder 2, 

BPOtota1=1576 read+ 843 mult + 347 write+ 262 add+ 176 sub. 

6.3 Computational Requirements of the Genetic-Based Learning Algorithm 

Because genetic-based learning uses mostly memory operations (copies, swaps, toggles, 

etc.), not floating point operations, for comparison I will assume that Mso memory operations 

can be performed in the time it takes to perform a single floating point sum or difference 
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operation and that MMD memory operations can be performed in the time it takes to perform a 

single floating point multiplication or division operation. MsD and MMD will vary greatly 

depending on the machine on which the algorithms are run. On a PC machine without a 

coprocessor, Mso may be as high as 50 or 100, while MMD may be as high as 100 or 500. 

On a mini or super-mini computer, a floating point operation may be able to be performed in 

the same amount of time as a memory operation, or nearly so; therefore MsD and MMD may 

be as low as one. 

This analysis will also be broken into two distinct sections, one which involves the 

operations required to be performed by a single processor (selection, reproduction, and 

creation of the mating pool), and one which involves operations that can be performed on 

multiple processors (crossover and mutation). 

Let b denote the number of bits used to encode a weight, WT denote the total number of 

weights in the network (given by l:Lo(LH+1) + LH(L1+1)],) N denote the population size, Pc 

denote the probability of a crossover occurring for any mating, and Pm denote the probability 

of mutation for any bit. Creating the mating pool is performed through three simple steps, 

selection, reproduction, and shuffling. Selection comprises two steps. First, the average 

fitness of the population must be computed. Again, I am assuming that the forward pass has 

already been completed, meaning that the MSEoBL has been computed for each individual. 

This implies N memory reads (to recover the fitness of each individual), (N-1) summations, 

one division, and one write. Next, the expected value (number of copies of each individual to 

be placed in the mating pool) is computed, which entails N reads, N divisions, and N writes. 

Therefore, the number of operations required during selection, GBLOs 1, is 

GBLOs1 = 2N read+ (N+1) write+ (N-1) add+ (N+l) div. (47) 



www.manaraa.com

L 
L 
L 
l 
L 
l 
L 
l 
L 
L 

L 
l 
L 
L 
L 
L 
L 
L 
L 

99 

Next, reproduction takes place, requiring copying of the selected individuals' indices into a 

temporary array, giving 

GBLOs2 = N read+ N write. (48) 

The final step of the serial section requires shuffling the temporary array to produce the final 

mating pool for this generation. In the worst case, this shuffling routine requires a number of 

memory copies given by 

N 

L i (read+ write). 
i=l 

(49) 

This number is based on an algorithm which frrst selects an element in the original array at 

random, places this element in a new array, and finally compacts the original array. This 

process continues until all elements of the original array have been placed in the shuffled array. 

In the worst case, tl!e frrst element of the original array is selected each time, in which case 

compaction of the original array requires compacting the entire original array. In the best case, 

the last element is selected each time and no compaction is required. Taking the average of 

these cases requires dividing Eq. 49 by two. First, Eq. 49 can be cast into the following form, 

allowing for easier calculation: 

(N + 1) ( ~ ) (read+ write). (50) 

Dividing Eq. 50 by two and simplifying gives 



www.manaraa.com

L 
l 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 

100 

N2 +N 
GBLOs3 = 

4 
(read+ write). (51) 

Combining the terms for calculating expected values, reproduction, and shuffling, gives the 

number of floating point and memory operations required for the serial section, GBLOg, as 

( N
2
+13N) (N

2
+9N+4) . 0 GBLOs = 

4 
read+ 

4 
wnte + (N-1) add+ (N+ 1) div 0 (52) 

The second section considers the operations that can be performed by multiple processors 

in a parallel implementation, namely crossover and mutation. During crossover, assuming that 

any position along an individual's string has an equal chance of being chosen, on average one

fourth of the bits will be swapped between mates with probability Pc· This is because in the 

worst case, when the crossover point is selected as the genotype's mid-point, one-half of the 

bits need actually be swapped. If the crossover point is selected above one-half of an 

individual's string length, the swap can take place staning after the mid-point. For example, if 

there are 72 bits in a individual's string, selecting the crossover point at either position 18 or 54 

involves swapping only 18 bits. I will assume that a bit swap involves seven memory 

operations, namely a read on one word, an AND operation (to mask the bit,) a write of the new 

word to a temporary location, a read on the second word, an AND operation, and two 

subsequent writes. I will assume assume that an AND operation requires only one memory 

operation, namely a masking operation, equivalent to a single write operation. Thus, the 

number of memory operations required for the population during crossover, GBLOp1, is 

GBLOpt = ( i N Pc b WT) (2 read + 5 write). (53) 
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A bit inversion during mutation will occur with probability Pm· I will assume this is 

simply an AND operation, giving the number of memory operations incurred during mutation 

for the population, GBLOpz, as 

GBLOpz = (N Pm b WT) write. (54) 

Now, the total number of operations involved in the parallel section for a single 

generation, GBLOp, is 

GBLOp=(i Npc b WT) read+ N b wTG Pc+Pm) write, (55) 

and combining the tenns for the serial section and the parallel section, 

( N
2

+ 13N) (N
2

+9N+4) . GBLOtotal = 4 reads + 4 wntes + 

(
Nbpc WT) (5Nbpc WT+4Nbpm WT) .. 

2 readp + 4 wntep + 

(N- 1) adds+ (N + 1) divs, (56) 

gives the total number of floating point and memory operations required for a single 

generation, as executed on a single processor. In Eq. 56, a subscript of s denotes operations 

that must occur on a single processor (serial operations) and a subscript of p denotes those 

operations that can be split across multiple processors (parallel operations). 

Notice that the number of memory operations required relies heavily on the number of 

bits used to encode the weights. For example, even when training a small network for the 

XOR problem, with b=l6, N=40, Pc=0.5, Pm=O.Ol, and WT=9, GBLOtotal=1970 read+ 
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4091 write+ 39 add+ 41 div operations. For the larger adder 2 problem with N=480 and 

W T=43, GBLOtotal=141,720 read + 268,383 write + 479 add + 481 div .. In my 

implementations I reduce the number of bit operations dramatically by copying and 

manipulating full bytes or words (two bytes) at a time, rather than individual bits. The 

crossover term (Eq. 53) is modified to be 

GBLOpt = (! N Pc b) (2 read+ 5 write) + 

( * N Pc WT) (2 read+ 3 write). (57) 

Here, the first term is the same as in the original equation with the exception of not having the 

WT term, because one (and only one) byte or word will typically be split by a crossover point. 

The second term is a word swap, using only five memory operations--a read, a write to 

temporary location, another read, and two writes. If this is done, then the number of 

operationsis~ucedto 

( N
2

+ 13N) (N
2

+9N+4) . GBL010w = · 4 reads + 4 wntes + 

(
Nbpc+Npc WT) 

2 readp+ 

(
5Nbpc+3NpcWT+4NbpmWT). 

4 wntep+ 

(N- 1) adds+ (N + 1) div8• (58) 

Recalculating the number of memory operations for the XOR network, GBLOtota1=690 

read+ 1,116 write+ 39 add+ 41 div. This represents a savings of 1,280 reads and 2,975 
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writes on a mapping as simple as XOR. For the adder 2 problem, GBLOtotal=66,240 read + 

74,523 write+ 479 add+ 481 div, representing a savings of75,480 reads and 193,860 writes. 

Using the multiplicative factors of Mso and MM0 , the equivalent of the number of 

memory operations required for a backpropagation learning phase (assuming a read and write 

operation both require the same amount of time) on the XOR problem is (201 + 54Mso + 

89MM0 ). For a genetic-based learning algorithm generation, the equivalent of (1,806 + 

39Mso + 41MMo) memory operations would be required. 

For the adder 2 problem, an equivalent number of memory operations for the 

backpropagation learning algorithm is (1923 + 438Mso + 843MM0 ), while for the adder 2 

problem, the equivalent of (140,493 + 479Mso + 481MMo) memory operations would be 

required. 

It should be noted that although the code for the forward computations is the same for 

each of the algorithms, genetic-based learning requires N times the number of these forward 

passes that backpropagation requires. Clearly, it can be seen that the backpropagation 

algorithm is less computationally demanding, and therefore it is desired that ~e GBL algorithm 

possess other features which will make it favorable. 

6.4 Implementation 

As discussed briefly in Section 4.5, when this research work originally began, a 

backpropagation program was adapted from a book by Pao [7]. Later, for increased 

performance (decreased real learning time), simulations were developed using hardware and 

software purchased from Hecht-Nielsen Neurocomputers Corp. However, this was still early 

in the research, development, and application of neural networks to the inversion of eddy 
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current data (Chapter 4). As work began on genetic-based learning, there were no 

commercially available packages (and still are not) or references (which have appeared only 

recently) for this learning paradigm. As such, all of the software was developed by me, in 

C++, for use on a variety of machines. The object-oriented characteristics of C++ allowed for 

a relatively natural mapping of the GBL algorithm into software. The code was developed to 

be as portable as possible. All attempts were made to eliminate operating system specific calls, 

such as file operation procedures, memory allocation and deallocation, etc. As an example, 

initial prototyping and development of the genetic-based learning algorithm and its variants 

took place on a Compaq 386/25 running under CGmpaq's DOS 3.31 and using Zortech's C++ 

compiler. After verification of program operation and results, the source files were ported to 

an Apollo DN10040 super-mini computer and re-compiled. This machine is based on Apollo's 

PRISM RISC architecture, and provides much greater performance than the Compaq desktop 

computer. The environment used here is SystemV UNIX. Few changes to the source were 

required, most of which related to including the proper header files for the different 

environment. 

Further, the Apollo machine has four CPUs, which greatly aided in developing the 

parallel algorithm discussed in Section 5.3.4. All of the GBL (and its variants) results 

presented below were obtained with this parallel algorithm on the Apollo. Because DOS does 

not support multiple CPUs directly, and because the protocols for communicating between the 

multiple processors and handling the shared memory segments and semaphores on the Apollo 

are UNIX specific, this parallel implementation will obviously not run on the Compaq. 

However, any other multiprocessor, shared-memory system which runs SystemV UNIX 

should have little trouble running this software. 

The backpropagation results presented below were also obtained with software developed 

by me, from scratch, in C++. Owing to the object-oriented features of C++, I found the 
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development of backpropagation, as well as many other neural network paradigms (Hopfield, 

Hamming, Kohonen, etc.), to be much easier than in C. The main reason for this is C++'s 

reusability of code. In any case, development of the backpropagation learning algorithm took 

place in a manner similar to that of the GBL code discussed above. 

6.5 Comparison of Backpropagation and Genetic-Based Learning Times 

Lacking a standardized test suite of mapping problems on which to evaluate learning 

algorithms, I chose to use a set of binary mappings explored by Rumelhart et al. in Chapter 8 

of Parallel Distributed Processin&. Binary mappings use only values of one (1) and zero (0) 

for the inputs and outputs. Each of these mappings will be discussed separately in the 

following sections. Table 6 lists the mappings along with the number of input neurodes, 

hidden neurodes, and output neurodes used for each test case. Each of these binary mappings 

is used to explore the number of iterations (for backpropagation) or generations (for genetic

based learning) required to obtain an acceptable solution. The backpropagation algorithm 

utilizes a momentum term, and is abbreviated as BPM in the tables. Several different versions 

of genetic-based learning are explored in order to show the merits of employing the 

enhancements discussed in Section 5.3. The ftrst algorithm uses standard genetic algorithm 

operators, and is abbreviated GBL. The second adds a window to induce selective pressure as 

well as using an elitist model, thus abbreviated as GBL WE. The last two versions employ a 

window and an elitist model, but also include two different versions of an adaptive mutation 

operator (see Section 5.3.3). One uses a direct Hamming distance measurement, as used by 

Whitley and Hanson [37], while the other utilizes a power weighted Hamming distance 
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measurement, as explored by myself. These two different versions are appropriately labeled in 

the tables. 

Table 6. Binary mappings used in comparing genetic-based leam~ng with backpropagation 
learning 

Number of tnputs Num rofhidden Number of output 
Mapping neurodes neurodes neurodes 

Parity M M M 1 

SymmetryM M 2 1 

EncoderM M . log2M M 

Adder2 4 5 3 

6.5.1 Selection of the mutation probabilities 

One major point concerning the adaptive mutation operators not discussed previously is 

how the selection of the upper and lower bounds is made. After much exploration, I have 

identified two methods of detenning these bounds that appear to be effective. By recording 

numerous trials and identifying those mutation probabilities which appeared to be more 

effective than others, it was determined that the average probability of mutation selected during 

a complete simulation, using the adaptive operators, remained between 1/8 and 1/12 of the 

difference between the upper and lower bounds. Therefore, both methods of determining the 

upper bound are based on this result For simplicity, I leave the lower bound at zero. 

The first method of selecting the upper bound of the mutation probability is based only on 

the number of bits used to encode a weight in the network. This implies a rate of mutation 

which applies directly to the length of a weight, not the length of a genotype. As the size of the 
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network grows, and therefore the length of a genotype grows, the number of bits which will 

likely be mutated in a genotype grows, while the number of bits likely to be mutated in each 

weight remains constant The equation developed for determining the upper bound is given as 

/AX 
Pmu=y b' (59) 

where A is a multiplicative factor, usually between eight and 12 (as discussed above), X is the 

desired number of mutations per weight, and b is the number bits used to encode a weight. 

The second method is based on the length of the genotype, which is determined by the 

number of weights in the network and the number of bits used to encode a weight. In this case 

rE_ 
Pmu=v bWT' (60) 

where WT is the total number of weights in the network. For the simulations run in 

performing the comparisons below, I used A=12 and x=0.25. The value for Pmu appears in 

column six, when appropriate. For the GBL and GBLWE algorithms not employing an 

adaptive mutation operator, column six contains the value of a constant mutation probability. 

Again, there are two different values, one based on Eq. 59 and the other on Eq. 60. 

6.5.2 Details of the learoin& comparisons 

All of the results presented in the following sections were acquired through 25 trials, in 

which each trial uses a different random seed for initializing the weights of the network while 
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holding all of the other parameters constant. For all learning algorithms, a fully connected, 

feed-forward network with a single hidden layer was used. Further, each neurode used a 

sigmoidal activation function with a lower bound of zero, an upper bound of one, and a slope 

of one (see Section 3.6). 

For the backpropagation simulations, the learning rate, a, is 0.5 or 0.7 and the 

momentum rate, 11, is 0.7 or 0.9, as indicated in column six. Also, a batch size (see Section 

3.5) equal to the number of input-output pairs in the training flle was used in order to make the 

comparison as fair as possible. 

For the genetic-based simulations, the population size, N, is 10 times the number of 

input-output pairs in the training set times the number of output neurodes. 16 bits are used to 

encode each weight in a network, while the range of weights is ±64.0. The probability of 

crossover, Pc' is 0.5 Several different values for the mutation rate, Pm or Pmu, were used and 

are given in column six where appropriate. 

The MSE goal for each of the mappings was set to 0.0001, which is a very low value for 

binary mappings. I felt this would stringently test each of the algorithms in its ability to 

generate a correct mappings. 

Column five of each of the results tables shows the number of unconverged trials. By 

unconverged, I mean that if the mapping problem was not solved (the MSE was not reduced to 

the goal level or below) by the time a predetermined maximum number iterations or generations 

had been reached, then the trial was stopped. The maximum number of iterations or 

generations varies for the BPM and GBL algorithms and for the problem under investigation. 

These maximum values are given in each of the following sections. 

Finally, columns three and four give the average number of iterations and standard 

deviation of the number of iterations, respectively, required in obtaining a solution. An 

iteration, as used here, is defined to be a pass through the entire training set culminating in a 
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single update of the weights at the end of the pass. These values are computed only for those 

trials which actually converged. Therefore, if only 20 of 25 trials converge for a particular 

algorithm and problem, then the average and standard deviation are computed with the 20 

converged trials. 

6.5.3 Parity M 

Parity, as used in the computer field, refers to an error checking procedure in which one 

or several additional bits are appended to a vector of data bits. In these test cases, parity M 

means that for M bits in the input string, a single parity bit would be appended to the vector in 

order to provide error checking. If the number of bits in the input vector that are ON (have a 

value of one) is odd, then the parity bit is a one, otherwise it is a zero. The goal of the network 

for these mappings is to produce the correct parity bit at the output layer given the input vector. 

Tables 7 and 8 give the input and output values for the parity 2 and parity 3 mappings, 

respectively. Notice that the parity 2 mapping is identical to the XOR problem described 

earlier. 

Table 7. The parity 2 mapping 

Input Xt Input x2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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Table 8. The parity 3 mapping 

Input x 1 Input x2 Input x3 Output 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Tables 9 and 10 show the results of training networks to perform the parity 2 and parity 3 

problems, respectively, for different learning algorithms and different parameter settings. For 

parity 2, the maximum number of iterations allowed for the BPM simulations was 10,000, 

while the maximum number of generations allowed for each of the GBL simulations was 

1 ,000. For parity 3, the maximum values were 15,000 for BPM and 5,000 for GBL. 

For the parity 2 problem, it is clear that all of the GBL algorithms have performed much 

better than backpropagation, meaning that many fewer generations were required for the GBL 

algorithms. Funher, the learning enhancements have improved the performance of the GBL 

algorithm somewhat. Notice that several of the trials for each of the BPM simulations 

remained unconverged, suggesting that the algorithm became trapped in a local minima. All of 

the GBL trials converged. 

For the parity 3 problem, it is apparent that the GBL algorithms without the adaptive 

mutation operator have not performed very well. This suggests that this operator helps 

significantly in decreasing the number of generations required to reach a solution. It is believed 

that the GBL and GBLWE algorithms would eventually solve the parity 3 problem 
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consistently, given more generations. In other words, these algorithms have not necessarily 

become trapped in a local minima, they merely lack genetic diversity in the populations and 

would require more time, relying on a constant mutation rate, to explore new regions of the 

search space. A dramatic difference is seen when the adaptive mutation operators are 

employed. All of the trials converged. Further, the average number of generations required 

dropped significantly when the second method for selecting the upper bound of the mutation 

probability was employed. 

Table 9. Comparison of learning algorithms on the parity 2 (XOR) mapping problem 

Leammg Mutanon Average Std. dev. Numberun- Parameter 
algorithm property iterations of iterations converged settings 

BP Not Applicable 2112.14 445.31 3 
a~0.7 

11=0.9 

BP Not Applicable 8346.33 435.06 4 
a=0.5 

n=0.7 

GBL Constant 54.92 53.28 0 Pm=0.433013 

GBL Constant 66.20 59.82 0 Pm=0.408248 

GBLWE Constant 57.60 64.11 0 Pm=0.433013 

GBLWE Constant 44.80 39.78 0 Pm=0.408248 

GBLWE Whitley 14.44 18.16 0 Pmu=0.4330 13 

GBLWE Power 11.96 9.78 0 Pmu=0.4330 13 

GBLWE Whitley 12.04 8.47 0 Pmu=0.408248 

GBLWE Power 9.68 6.59 0 Pmu=0.408248 
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Table 10. Comparison of learning algorithms on the parity 3 mapping problem 

Learning Mutation Average Std. dev. Number un- Parameter 
algorithm property iterations of iterations converged settings 

BP Not Applicable 1424.72 438.77 0 
a=0.7 

11=0.9 

BP Not Applicable 5746.92 777.79 0 
a=0.5 

11=0.7 

GBL Constant 2479.00 1671.95 10 Pm=0.433013 

GBL Constant 2484.53 1Z69.99 10 Pm=0.306186 

GBLWE Constant 1913.64 1192.35 11 Pm=0.433013 

GBLWE Constant 2716.18 1256.41 8 Pm=0.306186 

GBLWE Whitley 151.16 174.68 0 Pmu=0.433013 

GBLWE Power 83.76 99.85 0 Pmu=0.433013 

GBLWE Whitley 36.40 18.90 0 Pmu=0.306186 

GBLWE Power 53.36 83.73 0 Pmu=0.306186 

It is my belief that the large difference in number of unconverged trials for the GBL and 

GBLWE algorithms between the parity 2 and parity 3 problems results from an increased 

search space. The parity 2 problem is quite small and is much easier to find a solution for, 

even randomly, perhaps, than the parity 3 problem. Increasing the size of the search space 

requires more of the genetic algorithm properties to function effective in finding an "optimal" 

solution. This means maintaining high genetic diversity, whether through an increased 

population size or the adaptive mutation operator. This point will be further illustrated in the 

following sections. 
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6.5 4 Symmetty M 

The symmetry problem involves determing if the input data vector is symmetric with 

respect to its center. Table 11lists the input and output values for symmetry 4. Clearly, the 

symmetry mapping is only applicable for input vectors which have an even number of bits. 

Table 12 shows the results of training networks to perform the symmetry 4 problem. For 

the BPM simulations, the maximum number of iterations allowed was 50,000, while the 

maximum number of generations allowed for each of the GBL simulations was 15,000. 

Table 11. The symmetry 4 mapping 

Input x 1 Input x2 Input x3 Input x4 Output 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 1 

0 1 1 1 0 

1 0 0 0 0 
1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1 
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Table 12. Comparison of learning algorithms on the symmetry 4 mapping problem 

Learning Mutation Average Std. dev. Numberun- Parameter 
algorithm property iterations of iterations converged settings 

BP Not Applicable 654.79 44.32 11 
a.=0.7 
11=0.9 

BP Not Applicable 2746.00 69.68 12 
a.=0.5 

11=0.7 

GBL Constant 4628.00 0.00 24 Pm=0.433013 

GBL Constant ------ ------ 25 Pm=0.339683 

GBLWE Constant ------ ------ 25 Pm=0.433013 

GBLWE Constant ------ ------ 25 Pm=0.339683 

GBLWE Whitley 342.96 667.09 0 Pmu=0.433013 

GBLWE Power 402.96 382.62 0 Pmu=0.433013 

GBLWE Whitley 355.00 541.97 0 Pmu=0.339683 

GBLWE Power 222.80 207.53 0 Pmu=0.339683 

Here, it can be seen that when backpropagation was able to solve the symmetry 4 

problem (about half of the time), it did so relatively quickly using high values of a and 11· 

However, it is clear from the resulting MSE of those trials for BPM that were left 

unconverged, that the algorithm had become trapped in a local minima. This means that the 

MSE was relatively large, not near the goal. 

On the other hand, all of the GBL algorithms employing the adaptive mutation operator 

solved the problem every time, and did so about twice as fast as when BPM solved it. Again, 

it is noted that the fastest GBL adaptive method uses the second method of selecting an upper 

bound on the mutation probability. 
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6.5.5 Encoder M 

In the encoder problem, the inputs and output of the mapping are the same, with the 

restriction that only one bit of the M inputs is on. The job of the network is to encode the 

information using as few neurodes as possible. Theoretically, given M binary inputs, the 

information can be encoded with log2 M hidden neurodes. This requires the network to 

develop an internal binary coding of the input vector. Table 13 gives the encoder 4 mapping. 

Table 13. The encoder 4 mapping 

Input x1 Input x2 Input x3 Input "4 Outputyt Outputy2 Output Y3 Outputy4 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 

1 0 0 0 1 0 0 0 

Table 14 shows the results of training networks to perform the encoder 4 problem. For 

the BPM simulations, the maximum number of iterations allowed was 50,000, while the 

maximum number of generations allowed for each of the GBL simulations was 15,000. 

The results using the GBL algorithms with an adaptive mutation operator show a 

significant improvement (several orders of magnitude) over that of BPM. Again, however, the 

GBL algorithms without this adaptive method have failed, due most probably to a severe lack 

of genetic diversity. 
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Table 14. Comparison of learning algorithms on the encoder 4 mapping problem 

Learning Mutation Average Std. dev. Numberun- Parameter 
algorithm property iterations of iterations converged settings 

Not Applicable 8566.88 1777.22 0 
a=0.7 

BP 
11=0.9 

34550.70 3412.15 2 
a=0.5 

BP Not Applicable 
11=0.7 

GBL Constant ------ ------ 25 Pm=0.433013 

GBL Constant ------ ------ 25 Pm=0.261116 

GBLWE Constant 2822.33 1546.82 22 Pm=0.433013 

GBLWE Constant 1937.50 1053.50 23 Pm=0.261116 

GBLWE Whitley 269.76 520.66 0 Pmu=0.433013 

GBLWE Power 161.08 278.45 0 Pmu=0.4330 13 

GBLWE Whitley 94.84 183.16 0 Pmu=0.261116 

GBLWE Power 39.52 13.94 0 Pmu=0.261116 

6.5.6 Adder 2 

The adder 2 mapping is designed to simulate a two-bit adder. That is, given two two-bit 

numbers, the network is to produce the correct three-bit output which represents the addition of 

the two two-bit numbers. Three output bits are required, one representing the carry bit. Table 

15lists the input and output values for the adder 2 problem. Output y1 is the most significant 

digit (MSD) or carry bit and output Y3 is the least significant digit (LSD). 
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Table 15. The adder 2 mapping 

(MSD) (LSD) 
Input Xt Input x2 Input x3 Input x4 Outputyl Output Y2 Output Y3 

0 0 0 0 0 0 0 

0 0 0 1 0 0 1 

0 0 1 0 0 1 0 

0 0 1 1 0 1 1 

0 1 0 0 0 0 1 

0 1 0 1 0 1 0 

0 1 1 0 0 1 1 

0 1 1 1 1 0 0 

1 0 0 0 0 1 0 

1 0 0 1 0 1 1 

1 0 1 0 1 0 o· 

1 0 1 1 1 0 1 

1 1 0 0 0 1 1 

1 .1 0 1 1 0 0 

1 1 1 0 1 0 1 

1 1 1 1 1 1 0 

Table 16 shows the results of training networks to perfonn the adder 2 problem. For the 

BPM simulations, the maximum number of iterations allowed was 100,000, while the 

maximum number of generations allowed for each of the GBL simulations was 25,000. 
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Table 16. Comparison of learning algorithms on the adder 2 mapping problem 

Learning Mutation Average Std. dev. Numberun- Parameter 
algorithm property iterations of iterations converged settings 

Not Applicable 4432.77 3814.20 3 
a=0.7 BP 
11=0.9 

BP Not Applicable 13194.20 13082.70 
a=0.5 

1 
11=0.7 

GBL Constant ------ ------ 25 Pm=0.433013 

GBL Constant ------ , ------ 25 Pm=0.186772 

.GBLWE Constant ------ ------ 25 Pm=0.433013 

GBLWE Constant ------ ------ 25 Pm=0.186772 

GBLWE Whitley 8436.45 8060.89 14 Pmu=0.186772 

GBLWE Power 3325.91 5224.04 14 Pm0 =0.186772 

6.6 Conclusions and Discussion 

After running numerous simulations on various problems, including some which are 

included in this Chapter, I have found the performance of GBL, especially the variants 

incorporating the learning enhancements, to be more than acceptable. Often, GBL outperforms 

backpropagation in time required for learning a particular mapping problem and in the quality 

of the solution. When the GBL algorithm is able to solve a problem, it usually produces MSE 

values which are much lower than that produced by backpropagation. This is because 

backpropagation is generally quite slow at fine tuning the weights in a network once a good 

area of the search space has been located. In order to increase the rate at which this fine tuning 

progresses, it is necessary to increase the learning parameters. However, doing so may cause 
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the network to work itself out of the good region--essentially move back up the gradient 

descent, not down it! 

However, the trouble the GBL algorithms show in solving the adder 2 problem is 

puzzling and of concern to me. I believe the main cause of this trouble relates to the multiple 

output neurode network involved and the size of the network needed for solving this problem. 

The increased dimensionality of the network creates a much larger search space for the 

algorithm, thus requiring more effort in finding good weights. I have three suggestions for 

improving GBL's performance on networks of this type. First, use a larger population, thus 

enabling more of the search space to be explored simultaneously. Second, split the problem 

into several pieces, each one of which consists of only a single neurode. This improves the 

mapping by producing a four to one mapping instead of a four to three mapping. Third, train 

the network in stages, say one hidden neurode at a time. This method is presented in Chapter 7 

with the introduction of Dynamic Node Creation. 

Also of interest is the difference between the two adaptive mutation operators explored in 

this chapter, the straight Hamming distance measure as used by Whitley and Hanson [37] and 

the power Hamming distance measure as explored by me. In all cases, with the single 

exception of the parity 3 mapping, the power Hamming distance measure produced acceptable 

results in fewer iterations and with a lower standard deviation. This indicates to me that this 

method of monitoring genetic diversity is better than using a straight Hamming distance 

measure which does take into account the position in which bit differences occur. 

Because the GBL algorithms are naturally and easily parallelized, I believe this is one of 

the most important advantages which GBL provides over other single-threaded, iterative 

training procedures, such as backpropagation. This, coupled with the fact that many fewer 

iterations of the algorithm are often required makes GBL attractive for use in solving problems 

more accurately and more quickly. 
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Finally, while there is still much work to be done on using genetic algorithms for 

optimizing neural networks, I believe that progress will be made quickly once the allure of this 

powetful paradigm is realized. 
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7 NEURAL NETWORK ARCHITECTURE CONSIDERATIONS 

7.1 Overview 

One major aspect of artificial neural network performance which has been overlooked 

until this point is that of architectural considerations. I interpret neural network architecture as 

relating to two major issues. The frrst is the connectivity pattern of the neurodes in a network. 

Previous chapters have considered only fully connected feed-forward networks, in which each 

neurode in a layer is connected to every neurode only in the layer directly above it However, 

many other patterns of connectivity have been investigated, some of which are used in 

paradigms other than feed-forward networks, some of which remain in the realm of feed

forward networks. Examples of connectivities in paradigms other than feed-forward include 

the Hopfield model [6], the Adaptive Resonance Theory (ART) models [6], and Bidirectional 

Associative Memories (BAMs) [6]. Examples of connectivities other than fully connected 

within the feed-forward domain include random interconnections, recurrent and/or intralayer 

interconnections, connections which skip layers, receptive field connections [ 43], or any 

combination. Although this issue of neural network architecture is certainly interesting and 

under active research, I will not be concerned with the matter of patterns of connectivity 

throughout the remainder of this chapter. My investigations will remain based on the concept 

of fully connected feed-forward networks (see Fig. 5). 

The second major area of neural network architecture is that of network size, or 

dimension. Network size relates to the number of neurodes and number of layers required to 
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obtain a good, or "optimal", solution to the problem being solved. Because I will only be 

discussing feed-forward networks, when referring to the number of neurodes required to solve 

a particular mapping problem, I am referring to the number of neurodes required in the hidden 

layer of a network. This assumes that the mapping problem appropriately describes the 

number of input and output neurodes required for the network, so that these two layers are 

fixed for any given problem. Further, in order to limit the scope of the material involved, I will 

consider only networks with a single hidden layer. While it is known that additional layers can 

provide additional levels of abstraction and feature detection [7 ,49], all of the problems used as 

examples in this chapter are known to be solvable with a single hidden layer. Ideally, the 

research presented in this chapter could be expanded to explore how additional layers of hidden 

neurodes can be used to help solve other mapping problems. 

The remainder of this chapter discusses aspects of the number of neurodes required in 

solving certain mapping problems, namely those used in Chapter 6 for comparing 

backpropagation and genetic-based learning. Section 7.2 provides the motivation for selecting 

a minimal, or "optimal", number of neurodes in the hidden layer of a neural network. Section 

7.3 gives some background on research and results concerning the determination of the number 

of hidden neurodes required for particular mapping problems. Section 7.4 discusses an 

abstract notion pertaining to feature detection in neural networks, setting up a discussion of 

how this idea can be used to alter a method of dynamically configuring neural networks which 

can require less computation than other methods. Section 7.5 gives a detailed description of 

Dynamic Node Creation (DNC), a method of dynamically inserting additional hidden neurodes 

into neural networks at "appropriate" times in order to increase the network's ability to solve 

the problem under investigation. Section 7.6 will discuss some issues of DNC which I believe 

to be relevant to feature extraction and detection, but which have not been considered in other 

publications. This section also presents results of simulations performed by me using the 
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popular XOR mapping problem which shows the relevance of the feature detection hypotheses. 

Conclusions and discussion are contained in Section 7.7. 

7.2 Motivation 

What role does the architecture of a neural network play in solving mapping problems? 

On an abstract level, the hidden layers of feed-forward networks provide increasingly higher 

levels of feature extraction. Hidden layers are able to extract certain information from their 

inputs and essentially reorganize that information into a form which is more suitable for 

producing desired output responses. For example, it was discussed in Chapter 2 that a 

perceptron without a hidden layer of neurodes was not able to solve a problem as simple as 

parity 2 (XOR). It was also noted that the network's inability to solve this problem was related 

the fact that parity 2 is not a linearly separable mapping, and that any mapping which possesses 

this property will present a similar problem for single layer perceptron models. 

Several issues related to the addition of a hidden layer to solve XOR were not discussed, 

including how the hidden layer reorganizes the input information into more useful information, 

why and how this feature detection or extraction works, and could a network with a number of 

hidden neurodes other than two solve XOR? The first two issues will be considered in a 

separate section (see Section 7.4), while the latter is discussed briefly here. 

Although two hidden neurodes is the minimum number required for solving XOR, 

certainly more neurodes could be used. A single neurode in the hidden layer would be 

equivalent to a single layer perceptron, so that the only function which could be performed in 

moving from the single hidden neurode to the output neurode would be to attenuate or amplify 
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the output of the hidden neurode. This would serve only to invert or accentuate the decision of 

the hidden neurode. Therefore, no less than two hidden neurodes can be used. 

For the XOR problem, what happens when the number of hidden neurodes is increased 

beyond two, the "optimal" number for XOR? First, by using more hidden neurodes than 

necessary, more computation than necessary is used in evaluating new cases, as well as during 

learning. For small problems such as XOR, adding a few more neurodes will not present 

much of an increase in computation time in either learning or forward evaluation. However, 

when solving much larger problems involving possibly hundreds or thousands of neurodes, 

the computational requirements can certainly become large, and adding extra neurodes serves to 

extend the time required for evaluation and training. Depending upon the number of extra 

neurodes used, the added time could be significant. Therefore, to decrease learning time and 

evaluation of new cases after learning, a minimal (optimal) set of neurodes is preferable. 

Second, additional neurodes require additional memory. Again, for small networks and 

relatively simple mapping problems, this will not be a hindrance; larger networks and 

mappings can introduce problems in memory usage, especially if training is performed on a 

small system, such as a desktop computer. Third, and perhaps most importantly, a tradeoff is 

made between generalization and memorization when selecting the number of neurodes used in 

solving a problem. 

This tradeoff is best illustrated through an example. Consider the set of data points, 

marked X and 0, in Fig. 21. The x-axis is the input to the function and they-axis represents 

the result of applying a function f to the x-axis input data. The points lie along a curve which is 

easily recognized simply by glancing at it The job of the network is to discover this general 

relationship between the x data points presented during training and the curve which represents 

the function that describes the mapping from the input x to the output y=f(x). The points 

marked with an X are included in the training set, while the points marked with an 0 comprise 
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y=f(x) 

0 

X 

Figure 21a. Result of a properly trained network with the ability to generalize to novel input 
data. 

y=f(x) 

0 

X 

Figure 21 b. Result of an improperly trained network which has memorized the training data. 
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the testing set, seen by the network only after training. Figure 21a shows the result of properly 

training the network so that it will be able to correctly predict outputs for input values not 

previously seen during training (novel input data). The solid line is the network's prediction, 

after training, for all possible input values--the function, or mapping, which the network has 

discovered during training. This ability to produce correct responses for novel data is known 

as generalization. On the other hand, Fig. 21b shows what can happen when a network is 

improperly trained. Here, the network has overfit to, or memorized, the training data. It has 

~ecome so specialized that it properly recognizes only that data presented during training. As a 

consequence, the network's ability to generallze has been sacrificed. This case of 

memorization can occur for several reasons, just one of which is using too many hidden 

neurodes. 

Therefore, it is desirable to have the ability to obtain, or know, the optimal number of 

neurodes required for any particular mapping problem. The method of training a correctly 

sized neural network still remains much of an art, rather than a science. Thus, any method 

which can be employed to usefully aid a neural network designer in generating the best 

network possible is welcome. 

7.3 Background 

As it stands, the problem of selecting the correct number of neurodes (for the hidden 

layer) is a least as imponant as, and often more difficult than, selecting good learning 

algorithms and the parameters used during learning. No one has developed a theory describing 

the exact number of neurodes and the activation function to be used by the neurodes in order to 

solve an arbitrary mapping problem. Numerous studies have been conducted in order to set 
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upper and lower bounds on the number of neurodes needed when using certain activation 

functions or to give "rules of thumb" or guidelines [44] to the number of neurodes· needed. 

While these rules and guidelines may hold for certain classes of mapping problems, activation 

functions, and network connectivities, they are not general enough to be of use in all situations. 

This limited usability in real world situations makes these methods questionable at best. 

Robert Hecht-Nielsen [ 45] has applied an existence theorem provided by Kolmogorov 

[46] in solving the 13th problem of Hilbert [47], which states, briefly, that any continuous 

function can be mapped exactly with a neural network consisting of an input layer, an output 

layer, and one hidden layer of (2n+l) neurodes (where n is the number of input neurodes), 

given that the appropriate activation functions are used in the hidden and output layers. 

However, this is merely an existence theorem in that it provides no method of determining the 

activation functions to be used. 

7.4 Feature Detection 

One of the dark spots that remains in using neural networks to solve problems is the 

network's inability to explain how a conclusion is reached. Using expert systems, it is a 

simple, and often necessary, step to include an audit trail feature which can detail the rules fired 

and facts used in making a decision. This lack of an explanation facility in neurocomputing has 

prompted researchers [ 48] to begin looking for ways in which rules might be built from trained 

networks. One interesting aspect of this problem is feature detection. 

Abstractly speaking, it is useful to consider neural networks as detecting, or extracting, 

features from the input vector in order to develop a mapping and produce correct output 

responses~ In fact, Lippman [49] illustrates how such feature detection is done in networks 
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with various numbers of layers. As an example, consider the XOR problem. It has been noted 

repeatedly than a perceptron without a hidden layer can not solve this problem. This is because 

the perceptron, for a two-input vector, can fonn only a single linear decision boundary. Such a 

boundary is illustrated in Fig. 3. If a hidden layer of one neurode is added to the perceptron 

model, this hidden neurode can similarly create only a single linear decision boundary, and 

with only a single input, the output neurode can only amplify or invert the hidden neurode's 

decision. However, adding a second hidden neurode (see Fig. 4) allows for the creation of 

two linear decision boundaries, as shown in Fig. 22. Each of the decision boundaries isolates 

one of the XOR points which should be classified as a one. That is, each hidden neurode 

responds positively, or ftres, only when the feature it has been trained to respond to is present 

in the input vector. These two hidden neurodes perform the exclusive portion of the XOR. 

Now, the output neurode can combine the information from each of the hidden neurodes, 

performing an OR operation, and correctly classify the input data. Adding more neurodes to 

the single hidden layer provides the ability for the network to create more complex regions. In 

the XOR example, this would be "overkill" as only the two linear decision boundaries are 

required. 

This feature detection ability of neural networks is a powerful tool in analyzing the 

information stored in the distributed representation of the network. However, if too many 

hidden neurodes are used, then the usefulness of this feature detection analysis can be negated. 

For example, if four hidden neurodes are used for the XOR problem, then the network can be 

trained so that each of the hidden neurodes would respond to only one of the input vectors. 

Such a network is shown in Fig. 23. In this figure, neurode three responds only to the input 

(0,0), neurode four to (0, 1 ), neurode five to ( 1 ,0), and neurode six to ( 1, 1 ). In this case, all 

feature detection characteristics have been lost because the network has memorized each of the 
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1 0 

0 
0 1 

Figure 22. Two linear decision boundaries formed by a perceptron model with two hidden 
neurodes for the XOR problem. 
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Output 

-0.5 1.5 

Figure 23. A four hidden neurode perceptron model for the XOR problem. 
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input vectors. For a more complex problem, generalization of novel input data is forfeited 

when this happens. 

7.5 Dynamic Neurode Creation 

Lacking a rigorous model for determining a priori the number of hidden neurodes 

r~quired for solving a problem, Dynamic Neurode Creation (DNC), a technique originally 

published by Timur Ash [ 11], is a heuristic approach of dynamically configuring neural 

networks. It attempts to aid a network during learning by providing more degrees of freedom 

through the addition of hidden neurodes while the search is in progress. 

In doing so, one major difficulty must be solved--when to add another neurode. The 

time at which additional neurodes are added can play a large role in determining how well the 

system performs in solving the problem in an optimal, or near-optimal, manner. When training 

a multi-layer feed-forward network using an optimal number of neurodes with 

backpropagation, it is typical to see a period in which the MSE of the network decreases quite 

rapidly and then levels off. This leveling off period denotes the period of training when fine 

tuning of the system occurs. The network has already discovered a mapping which is close to 

that desired, but which still requires minor adjustments to the weights in order to more closely 

realize the appropriate mapping. When training networks which have fewer than the optimal 

number of neurodes, this same pattern is typical. However, the leveling off period 

corresponds to one in which the network has performed as well as possible, given the number 

neurodes it has. In order for the MSE to decrease substantially from its current level, more 

hidden neurodes must added. This is known because the MSE of the network remains quite 
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high. Ash detects this leveling off period and uses this information to guide the system in 

determining an appropriate time in which to add another neurode. 

Two considerations are required for detecting this leveling off period. The ftrst is a way 

of detecting when the error rate has actually leveled off, representing a substantial lack of 

progression in learning funher. In doing so, three reference points are needed. The first, tQ, is 

the time step, or iteration, at which the last hidden neurode was added. The second, t, is the 

current iteration. The third, (t-w), is w iterations pr~vious to the current iteration. w defines a 

window over which the MSE is monitored. Using these three reference points, the ratio of the 

drop in MSE over the last w iterations to the MSE when the last neurode was added can be 

computed as 

I MSEt- MSEt-w I 
MSEto 

(61) 

When this ratio falls below a preset level, which Ash calls the trigger slope, another hidden 

neurode should be added, if and only if 

t- w ~to· (62) 

Equation 62 ensures that all of the MSE terms refer to the same network architecture. 

Figure 24 shows the relationship of these terms on a representative, monotonically 

decreasing MSE curve. Once a new hidden neurode is added to the network, training 

continues on the entire network, using the previously trained neurode weights (for the old 

neurodes) and randomized weights for the new neurode. No more hidden neurodes are added 

when it i~ determined that the network has solved the mapping problem satisfactorily, as 
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MSE 

t-w t Iterations 

Figure 24. Detection of the leveling off period in a neural network with too few hidden 
neurodes to solve the problem at hand. 
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required by the implementor. Both Ash and myself have used this method of searching for 

optimal network architectures successfully. All of the results obtained in the following sections 

use this method of detennining when the addition of a new hidden neurode is to take place. 

One interesting aspect which Ash brings to light is that the computational requirements 

for training an optimally sized neural network using DNC is often much less than starting with 

the optimal network architecture. The reason for this will be discussed in detail in the 

following section. 

7.6 Feature Detection Using Dynamic Neurode Creation 

In discovering optimal or near-optimal solutions with DNC, the learning. algorithm 

typically spends much less time in training the network once it has reached the optimal size than 

it would if it started with an optimal network architecture. Ash points out that this implies 

training which has occurred with fewer neurodes than optimal helps the learning algorithm in 

finding good solutions. While this seems to be true, I believe there is a more fundamental 

reason, one which bears further examination and can help to reduce the amount of computation 

required in reachin& the optimal architecture, as well as once the optimal size is reached. 

Returning to the idea of feature detection and extraction, I propose that in reaching an 

optimal network architecture, hidden neurodes can be trained, individually, to respond to 

different features in the input vectors. By this I mean that when a new hidden neurode is 

added, the old hidden neurodes' weights are "frozen" --no more learning occurs on these 

weights. However, learning still occurs on the weights connecting the old hidden neurodes to 

the output layer neurodes. This is necessary because when a new neurode is added to the 

network, the old hidden neurodes may have been properly trained as detectors for certain 
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features in the input vector, but the output neurodes still need to be able to combine these 

features appropriately in order to produce correct output responses. If this proposition is 

correct, then at each stage of neurode addition very little additional computation is required-

only one more weight at each of the output neurodes is added into the learning algorithm. 

The following sections will show how this proposition holds, and what effect it has on 

finding optimal or near-optimal solutions in neural networks. My investigations into this 

method of dynamically configuring networks originated due to long training times for large 

networks and mapping problems using genetic-based learning. I felt that if, at each stage of 

training a subportion of a network, good feature detection mechanisms were apparent, then 

networks could be trained in stages, each of which is only slightly larger than the previous 

stage. This would allow for possibly faster traini:Dg of the entire network, and perhaps a 

higher percentage of converged trials. 

7.6.1 XOR feature detection 

The ftrSt example to be considered is the popular XOR (parity 2) problem. Figure 4 is 

just one of many multi-layer perceptron networks which is capable of solving this problem. 

One solution for a network which incorporates a sigmoidal activation function is similar to this, 

but due to the variety of ways in which the XOR problem may be solved, there exist many 

networks using nonlinear activation functions with the ability to solve this problem. The next 

three subsections all contain networks which solve the XOR problem in a similar manner. 

However, each of these networks is obtained in a different way. 
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7.6.1.1 Nonnal backpro,pagation learning for the XOR problem The first method of 

developing a neural network to solve the XOR problem utilizes standard backpropagation with 

a momentum term (see Section 3.5) and two hidden neurodes at the beginning of training with 

all neurodes using a sigmoidal activation function. This is the method that would normally be 

used in training a network to perform a particular mapping--select·a learning paradigm, the 

network architecture, values for the learning parameters, and then commence training. Figure 

25 shows the resulting network and Table 17 gives the output response for each non-input 

neurode in the network for each of the four input-output training pairs. 

Table 17. Output values for each training input-output pair and every non-input neurode in 
Fig. 25 

Output for Output for Output for 
Input x1 Input x2 neurode#3 neurode#4 neurode#5 

0 0 0.972 0.039 0.010 

0 1 1.000 0.942 0.991 

1 0 0.031 0.000 0.989 

1 1 0.973 0.031 0.009 

In this network, neurode number three has been trained to fire to any pattern except ( 1 ,0), 

therefore singling out this pattern as being different, or unique--in essence, detecting this 

feature in the input vector. Note that the output neurode invens this neurode's signal, thereby 

recognizing in an excitatory manner when the pattern ( 1 ,0) is present at the input neurodes. 

Likewise, neurode number four has been trained to fire only when the pattern (0, 1) is present 
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Output 

3.557 -3.210 

Figure 25. Neural network trained to solve the XOR mapping problem, starting with two 
hidden neurodes 
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in the input vector. This network has learned to separate each of the XOR conditions using the 

two hidden neurodes as detectors for the exclusiveness of the input vector and using the output 

neurode as the OR. 

7.6.1.2 Usin& Ash's PNC for the XOR problem The second method in training a 

neural network to perform the XOR mapping employs Dynamic Node Creation as suggested 

by Ash [11]. In this method, learning begins with a single hidden neurode. Additional 

neurodes are added as the search stagnates at unacceptably high MSE values. After the 

addition of a new neurode, learning continues on all of the weights in the network. In 

performing this training, I used a value of 0.05 for the trigger slope, dT, and a window of 

2000 iterations. The network after the first stage of training, with a single hidden neurode, is 

shown in Fig. 26a and the output values for each training pair are given in Table 18. 

Table 18. Output values for each training input-output pair and every non-input neurode in 
Fig. 26a 

Output for Output for 
Input x 1 Input x2 neurode #3 neurode #5 

0 0 1.000 0.334 

0 1 1.000 0.333 

1 0 0.205 0.990 

1 1 1.000 0.333 

It is interesting to see that the single hidden neurode has developed a feature detection 

mechanism which corresponds roughly to the ftrst hidden neurode (neurode number three) in 
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Output 
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Figure 26a. Intermediate neural network in the process of being trained to solve the XOR 
mapping problem, starting with one hidden neurode and using Ash's method of 
DNC. 
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the network which was trained starting with two hidden neurodes. The one difference is that 

when the (1,0) feature is detected in the input, the neurode's output is not "turned off' as 

completely as in the previous network. This is because the network is attempting the minimize 

the MSE over all patterns, not just this one pattern. As such, the network is still attempting to 

adjust the weights in a manner which will produce correct results for all of the input-output 

patterns, even though this is not possible. Therefore, some of the feature detection capabilities 

of the network are sacrificed in trying to minim\ze error. In other words, the network is 

attempting to use too few neurodes in developing feature detectors which will allow the 

network to correctly classify all input vectors. 

Once the trigger slope is crossed, and the width of the window has been surpassed, 

another hidden neurode is added with random weights. After more training on all of the 

weights, the network in Fig. 26b is obtained with the corresponding output values shown in 

Table 19. 

Table 19. Output values for each training input-output pair and every non-input neurode in 
Fig. 26b 

Output for Output for Output for 
Input x1 Input x2 neurode#3 neurode#4 neurode#5 

0 0 0.999 0.051 0.010 

0 1 1.000 0.939 0.990 

1 0 0.024 0.000 0.990 

1 1 0.999 0.040 0.009 
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Output 

-9.921 10.295 

7.306 -2.922 

Figure 26b. Neural network trained to solve the XOR mapping problem, starting with one 
hidden neurode and using Ash's method ofDNC during training. 
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Again, neurode number four (the new neurode) has learned to detect the input pattern 

(0,1) while neurode number three (the old neurode) has retained the detection of the input 

pattern (1,0). Notice that the weights on neurode three have changed slightly after the addition 

of the new neurode. This is the fine tuning of the weights alluded to earlier. Now, neurode 

number three is "turned off' to greater extent when the pattern (1,0) is present at the inputs. 

However, the feature detection characteristics of this neurode remain the same--only the degree 

to which the neurode is turned off when the feature occurs has changed. 

7.6.1.3 Usin& my DNC for the XOR problem The final method of developing a 

network for solving the XOR problem is based on my method of fixing the old hidden neurode 

weights and allowing training to continue only on the newly added neurode and on the output 

neurodes' weights. In doing so, the same initial values for the weights as used in the Ash 

example were used here, as were the value of the trigger slope and the window. After the first 

stage of training, the network with a single hidden neurode was, of course, the same as in 

Section 7.6.1.2 (see Fig. 26a and Table 18). After adding the new neurode, training was 

performed only on. the weights connected to neurodes number four and five. The resulting 

network is shown in Fig. 27 and the output values are given in Table 20. 

Even though the feature detection capabilities of neurode three are not quite as sound as 

desirable (as in the previous examples), the network has been able to adjust through 

overcompensation of the weight connecting neurode three to the output neurode. This is why it 

is important that all of the weights connected to the output neurodes continue to be trained. It 

allows the output neurodes to adjust how the feature detectors trained earlier in the learning 

period are combined with newer feature detectors to produce better output responses. 
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Table 20. Output values for each training input-output pair and every non-input neurode in 
Fig. 27 

Output for Output for Output for 
Input x 1 Input x2 neurode#3 neurode #4 neurode#S 

0 0 1.000 0.036 0.010 

0 1 1.000 0.932. 0.992 

1 0 0.205 0.000 0.988 

1 1 1.000 0.027 0.009 

7. 7 · Conclusions and Discussion 

I have used both methods of DNC in training networks to perform the test mappings used 

in Chapter 6 (parity 3, symmetry 4, encoder 4, adder 2) with great success. In nearly all cases, 

optimal network architectures have been obtained (for those networks with known optimal 

sizes). In those that did not result in optimal architectures, the size of the network typically 

remained within one or two neurodes of the optimal. 

Those networks that allowed training to be performed on all weights after the addition of new 

neurodes quite often produced better results in fewer iterations--at the expense of using more 

computation in the process. On the other hand, using the method of freezing previously trained 

neurode weights results in the development of feature detectors which are similar to those 

found with the previous method. Also, if all of the weights are allowed to train briefly just 

before the addition of a neurode is to take place, this can often give better results by providing 

some amount of fine tuning as the learning process continues. In this way, fewer calculations 

are still required than in the first method, but the weights can be fine tuned slightly before 

proceeding. I have found that this method works quite well and most often works better 
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Output 

10.492 

8.452 -3.282 

Figure 27. Neural network trained to solve the XOR mapping problem, starting with one 
hidden neurode and using my alternate method of DNC during training. 
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than freezing old weights permanently. At the least, when a suitable architecture has been 

discovered, all of the weights should be allowed to train briefly before declaring the simulation 

complete. 

Using this method of training networks can greatly reduce the "real" time involved in 

training networks. As alluded to in Chapter 6 when discussing the difficulties in using GBL to 

solve the adder 2 problem, this method may produce better results in a shorter period of time. 

In conclusion, the method of dynamically altering the structure of a n~twork during 

training can provide good solutions. Until such time as a formal theory on the correct network 

architecture for any particular mapping problem is provided, methods such as DNC seem to be 

a viable option for discovering good networks. Further, such methods can often require less 

computation and less time in training networks, making them even more attractive. 
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8 SUMMARY AND DISCUSSION 

8.1 Overview 

This chapter provides a summary and discussion of the three major topics of this thesis, 

genetic-based learning in artificial neural networks,· network architecture, and the application of 

neural networks to a problem in nondestructive evaluation (NDE)--inversion of uniform field 

eddy current to obtain flaw sizes. Section 8.2 is a summary of the research results presented in 

this thesis and Section 8.3 is a discussion of the results and possible future work in these 

areas. 

8.2 Summary 

This section provides a summary of the research work presented in Chapters 4-7. 

8.2.1 Inversion of unifonn field e<fdy current data 

This research work originally began with a desire to show the feasibility of creating a 

robust, effective, and easy-to-use method of interpreting flaw signals obtained from eddy 

current probes. In particular, the desire was to obtain quantitative information, actual flaw 
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dimensions, from these signals. It was felt that previous model-based inversion procedures 

would not be readily accepted in an industrial setting due to the complexity and understanding 

of electromagnetic theory required of these approaches. Therefore, an artificial intelligence 

approach was pursued. Expert systems were eliminated due to a lack of good rules for 

interpreting the signals. Because neural networks were just coming into the spotlight again and 

possessed several characteristics which seemed desirable for this work, this is the avenue that 

was explored. I feel that neural networks have sh~wn great promise in helping to solve the 

inversion problem for eddy current flaw signals. Cenainly the results presented in this thesis 

(Chapter 4) are very encouraging, even though they represent a.limited set and range of flaw 

sizes. 

8.2.2 Genetic-based leamin& 

As the work on eddy current flaw signal interpretation progressed, I quickly found 

several limitations ~nd problems in using the backpropagation learning algorithm (Chapter 3). 

It was suggested to me by Dr. Les Schmerr that genetic algorithms, as a global optimization 

technique, might be able to produce better networks by avoiding local minima. As my 

investigations into how to use this technique for optimizing neural networks progressed, I 

recognized several other advantages which GAs might provide over backpropagation and to 

date these advantages have held. Again, these advantages include a global optimization 

procedure, arbitrary network architecture, arbitrary activation functions, and a natural 

parallelization of the learning algorithm 
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8.2.3 Network architecture 

Finally, one serious problem I found in using neural networks, not related to any 

particular learning algorithm, is that of determining the proper sized network--number of 

hidden neurodes to use--for any given problem. Several methods of obtaining networks which 

were closer to the "optimal" size were investigated in the later stages of the eddy current 

inversion work. These methods included network pruning [35] and Dynamic Node Creation 

(DNC) [11]. After much work with both of these, I felt that the DNC method held more 

promise for obtaining minimally sized networks, while at the same time requiring less 

computation. I felt this method was especially promising in training networks with genetic

based learning because large networks require very long genotypes, thus incorporating more 

effort in evaluating each population. If DNC was a feasible alternative (to that of starting with 

a certain number of hidden neurodes and hoping that the network was of "good" dimension), 

then this method should alleviate some of the long processing times for larger final networks. 

However, using the method of DNC discussed by Ash, the reduction in proce~sing time would 

occur only near the beginning of the training cycle when the number of hidden neurodes was 

low. Therefore, in order to keep the amount of processing low throughout the training cycle, I 

began looking into the feature detection mechanisms that may be inherent with a method such 

as DNC. In analyzing the solutions found by three different methods of training--standard 

learning with a given number of hidden neurodes, Ash's method of DNC (allowing all weights 

to train at each stage), and my method ofDNC (allowing only new neurode weights to train at 

each stage)--I discovered the solutions to be remarkably similar. In fact, it was apparent to me 

that using my method of DNC produced feature detectors in the hidden layer which were nearly 

as good as those found by the other two methods. When the feature detectors developed with 
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my method were not quite as good, using one or two more hidden neurodes nearly always 

provided the additional features required. 

8.3 Discussion and Suggestions for Future Work 

This section provides a discussion of the research results and gives some suggestions for 

areas of future work for each of the topics. 

8.3.1 Inversion of uniform field eddy current data 

Although results presented in Chapter 4 are promising and encouraging, there remains 

one limitation of the approach which has yet to be overcome. This limitation is developing a 

neural network which is robust enough to be used on all types of eddy current probes and all 

types of conducting materials. Currently, in order for eddy current measurements to be 

meaningful, a calibration must be made with the probe to be used and on the type of material 

under investigation. Accurate measurements of the calibration factor are certainly possible, but 

are usually difficult. Further, the types of probes most widely used in an industrial setting are 

not uniform field probes. This raises several questions about how a network, or a system, 

might be developed which is robust enough to be used universally, regardless of the probe and 

material. 

I have several suggestions for how this might be accomplished. The first is to develop a 

separate network for each type of probe on each material type. In practice, simply selecting the 

probe and material type on the front panel of an instrument would provide for using the correct 
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network. All that is required is to make a calibration scan in order to properly preprocess the 

input data or scale the network. Obviously, this requires developing many separate networks 

and therefore involves many training measurements to be made. While not very elegant, this is 

the most straightforward approach. Another idea, which simply reduces the number of 

measurements to be made is to use the model-based inversion procedures to develop training 

and testing sets. Finally, the most elegant approach would require much theoretical 

development. This involves developing a mapJ?ing between each of the probe types and 

material types which could alter the network, or change the preprocessing of the input data to 

correctly compensate for the probe and material. This necessitates training only one network, 

but would require much effort in determining how one probe operating on one material maps 

onto another probe on another material. 

8.3.2 Generic-based Ieamin& 

Although the simulations perfonned by me have shown a great deal of promise, and often 

work faster and reduce the MSE to much lower levels than backpropagation, I see three major 

areas of genetic-based learning which need further exploration. The ftrSt is determining exactly 

the relationship between the parameters used in GBL--how each changes the performance of 

the algorithm and how the combination affects the outcome of the learning cycle. These 

parameters include the crossover rate, the mutation rate and/or upper and lower bounds of the 

mutation rate, the population size, the analog weight range, the number of bits used to encode 

a weight in the network, the weight resolution factor (determined by the weight range and the 

number of bits used to encode a weight), and the number of crossover points. Although 

studies have been made investigating how some of these parameters combine and what the 
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effects are in situations not related to optimizing neural networks [ 40], a definitive answer did 

not result--only guidelines and rules-of-thumb. 

The second area of genetic-based learning I would like to see more work done in is that 

of the parallel algorithm. To date, I have only been able to run this algorithm on an Apollo 

DN 10040 workstation with four processors. Again, I have seen linear performance increase 

with this parallel algorithm over a serial algorithm. However, I know that as the number of 

processors increases, this linear performance curve will fall off. I feel this will happen as the 

overhead in communications between the processors approaches that expended by each of the 

processors in processing its subpopulation. Also, as the size of the population grows, the 

serial work done in selection, reproduction, and creating the mating pool will grow, thus 

degrading the performance somewhat. Therefore, I would like to see this algorithm 

implemented on a massively parallel machine and have its performance evaluated. 

Since the development of my parallel algorithm, I have seen other implementations [50-

53] which operate more on each of the subpopulations, even in performing selection, 

reproduction, and mating. However, these implementations rely on exchanging individuals 

between the subpopulations, inducing more communications overhead. Further, these 

implementations do not use the entire population as effectively as my implementation because 

the exchange of individuals occurs only between certain processors, not all processors, during 

each generation. 

The third area of genetic-based learning which I believe warrants investigation is using 

this algorithm to optimize more than just the weights in a network, as mentioned briefly at the 

end of Chapter 5. Possible ares include dynamically configuring the connections, the number 

of neurodes, the activation functions employed by each of the neurodes, and the parameters 

used by each of the activation functions. 
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8.3.3 Network architecture 

While I sense that dynamically configuring neural network architectures provides a good 

means of determining a network's dimension for arbitrary mapping problems, I would like to 

see more work done in investigating the role of this method in developing good feature 

detectors. I believe this to be an important area of research for three reasons. The first is in 

extracting information from a network pertaining to its reasoning in making a conclusion. With 

a minimal set of good feature detectors, the best rules possible can be developed. Second, due 

to the lack of a theory for determining the optimal network dimension for any given problem, 

this method may provide the best heuristic method for discovering good network architectures. 

Third, if this method works as well over a large variety of problems as it does over the cases I 

have tested, then reductions in learning times for large problems may be significant. 
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